A 2D finite element analysis of the effect of numerical parameters on the reliability of Ti6Al4V machining modeling

被引:11
|
作者
Yaich, Mariem [1 ,2 ]
Ayed, Yessine [1 ]
Bouaziz, Zoubeir [2 ]
Germain, Guenael [1 ]
机构
[1] Arts & Metiers ParisTech, LAMPA, 2 Bd Ronceray, F-49035 Angers, France
[2] Univ Sfax, Lab Mecan Fluides Appl Genie Proc & Environm, Ecole Natl Ingenieurs Sfax, Sfax, Tunisia
关键词
Ti6Al4V; modeling; machining; segmentation; remeshing; ALE formulation; SERRATED CHIP FORMATION; LIMITING SHEAR-STRESS; TITANIUM-ALLOY; CONSTITUTIVE MODEL; SIMULATION; INTERFACE; FRICTION; IDENTIFICATION; COEFFICIENTS; FRACTURE;
D O I
10.1080/10910344.2019.1698606
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The numerical analysis, based on the finite element modeling (FEM), presents nowadays an efficient computational tool. It allows a better understanding of several thermo-mechanical phenomena involved during the machining process. However, its reliability heavily depends on the accurate definition of the numerical model. In this regard, a FE analysis focused on the 2D modeling of the Ti6Al4V dry orthogonal machining was carried out in this study. The relevance of different numerical meshing approaches and finite elements topologies was studied. The effect of the friction coefficient on the numerical chip morphology, its geometry, the cutting and the feed forces was investigated. The adequacy of several compared adaptive meshing approaches, in terms of the modeling of severe contact conditions taking place around the cutting-edge radius, was underlined in the current study. However, numerical serrated chips, closer to the experimental ones, were only predicted when the pure Lagrangian formulation was adopted and a proper determination of the failure energy was carried out. The definition of different mesh topologies highlighted the efficiency of the 4-node quadrangular mesh, with a suitable edge length, in increasing the agreement with the experimental data, while reducing the computing times.
引用
收藏
页码:509 / 543
页数:35
相关论文
共 50 条
  • [31] Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling
    Ali, Moaz H.
    Ansari, M. N. M.
    Khidhir, Basim A.
    Mohamed, Bashir
    Oshkour, A. A.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2014, 36 (02) : 315 - 324
  • [32] Investigation of Finite Element Modelling on Thin-Walled Machining of Ti6Al4V using DEFORM-3D
    Mohruni, A. S.
    Zahir, M.
    Yanis, M.
    Sharif, S.
    Yani, I.
    2ND FORUM IN RESEARCH, SCIENCE, AND TECHNOLOGY, 2019, 1167
  • [33] Selection of the numerical formulation for modeling the effect of tool cutting edge microgeometries in machining of Ti6Al4V titanium alloy
    Hu, Cheng
    Outeiro, Jose
    Zhuang, Kejia
    Birembaux, Helene
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 129
  • [34] Finite element method analysis of a linear friction welded Ti6Al4V alloy
    Unal, Engin
    Yalcin, Harun
    MATERIALS TESTING, 2023, 65 (06) : 886 - 895
  • [35] Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy
    Rotella, Giovanna
    Umbrello, Domenico
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2014, 63 (01) : 69 - 72
  • [36] Finite element simulation of segmented chip formation of Ti6Al4V
    Bäker, M
    Rösler, J
    Siemers, C
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 485 - 488
  • [37] Finite Element Simulation of Conventional and Prestressed Cutting of Ti6Al4V
    Peng, Ruitao
    Tang, Xinzi
    Tan, Yuanqiang
    Liu, Xiongwei
    11TH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN INDUSTRIAL FORMING PROCESSES (NUMIFORM 2013), 2013, 1532 : 962 - 968
  • [38] Overview of Machinability of Titanium Alloy (Ti6Al4V) and Selection of Machining Parameters
    Gandreddi, J. P.
    Kromanis, A.
    Lungevics, J.
    Jost, E.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2023, 60 (01) : 52 - 66
  • [39] Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V
    Patil, Sandip
    Joshi, Shashikant
    Tewari, Asim
    Joshi, Suhas S.
    ULTRASONICS, 2014, 54 (02) : 694 - 705
  • [40] d Finite element analysis on Segmented chip formation for High Speed Cutting of Ti6Al4V Alloy
    Zhang Xianghua
    Wu Hongbing
    PROGRESS OF MACHINING TECHNOLOGY, 2009, 407-408 : 599 - +