Einstein-Weyl structures from hyper-Kahler metrics with conformal Killing vectors

被引:22
|
作者
Dunajski, M [1 ]
Tod, P [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
Einstein-Weyl structures; hyper-Kahler metrics; monopoles;
D O I
10.1016/S0926-2245(00)00037-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider four (real or complex) dimensional hyper-Kahler metrics with a conformal symmetry K. The three-dimensional space of orbits of K is shown to have an Einstein-Weyl structure which admits a shear-free geodesics congruence for which the twist is a constant multiple of the divergence. In this case the Einstein-Weyl equations reduce down to a single second order PDE for one function. The Lax representation, Lie point symmetries, hidden symmetries and the recursion operator associated with this PDE are found, and some group invariant solutions an considered.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 50 条
  • [31] On the Einstein-Weyl and conformal self-duality equations
    Dunajski, M.
    Ferapontov, E. V.
    Kruglikov, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (08)
  • [32] CONFORMAL AND GENERALIZED CONCIRCULAR MAPPINGS OF EINSTEIN-WEYL MANIFOLDS
    Abdlkadir zdeger
    Acta Mathematica Scientia, 2010, 30 (05) : 1739 - 1745
  • [33] Einstein-Weyl structures on complex manifolds and conformal version of Monge-Ampere equation
    Ornea, L.
    Verbitsky, M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2008, 51 (04): : 339 - 353
  • [34] Einstein-Weyl structures on almost cosymplectic manifolds
    Chen, Xiaomin
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) : 191 - 203
  • [35] Homogeneous Einstein-Weyl structures on symmetric spaces
    Kerr, MM
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (05) : 437 - 445
  • [36] Einstein-Weyl structures and de Sitter supergravity
    Gutowski, Jan B.
    Palomo-Lozano, Alberto
    Sabra, W. A.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (10)
  • [37] AN INFINITE NUMBER OF HIDDEN-VARIABLES IN HYPER-KAHLER METRICS
    TAKASAKI, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) : 1515 - 1521
  • [38] Einstein-Weyl structures on contact metric manifolds
    Ghosh, Amalendu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) : 431 - 441
  • [39] EINSTEIN-WEYL GEOMETRY, THE BACH TENSOR AND CONFORMAL SCALAR CURVATURE
    PEDERSEN, H
    SWANN, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 441 : 99 - 113
  • [40] AdS and Lifshitz black holes in conformal and Einstein-Weyl gravities
    Lu, H.
    Pang, Yi
    Pope, C. N.
    Vazquez-Poritz, J. F.
    PHYSICAL REVIEW D, 2012, 86 (04):