Visual Classification of Malware by Few-shot Learning

被引:0
|
作者
Tran, Kien [1 ]
Kubo, Masao [1 ]
Sato, Hiroshi [1 ]
机构
[1] Natl Def Acad Japan, Dept Comp Sci, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 2398686, Japan
关键词
Few shot Learning; Malware Classification; Matching Network; Visualization Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extent of damage by malware has been multiplying. Many techniques are proposed for detecting malware. However, the usual pattern matching method does not work because when the new malware appeared, many variants are created very soon. In order to catch the new malware, we have to detect and classify them from very few samples. In this paper, we propose a machine learning mechanism that can learn from very few samples of the image of the malware.
引用
收藏
页码:770 / 774
页数:5
相关论文
共 50 条
  • [41] Cycle optimization metric learning for few-shot classification *
    Liu, Qifan
    Cao, Wenming
    He, Zhihai
    PATTERN RECOGNITION, 2023, 139
  • [42] Supervised Contrastive Learning for Few-Shot Action Classification
    Han, Hongfeng
    Fei, Nanyi
    Lu, Zhiwu
    Wen, Ji-Rong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 512 - 528
  • [43] Few-shot ship classification based on metric learning
    You Zhou
    Changlin Chen
    Shukun Ma
    Multimedia Systems, 2023, 29 : 2877 - 2886
  • [44] TIRE PATTERN CLASSIFICATION BASED ON FEW-SHOT LEARNING
    Yan, Jingwen
    Zhu, Yuting
    Liang, Zili
    Zhu, Yisheng
    Wu, Keer
    Lin, Zhinan
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [45] Multimodal variational contrastive learning for few-shot classification
    Pan, Meihong
    Shen, Hongbin
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1879 - 1892
  • [46] Few-shot learning for skin lesion image classification
    Xue-Jun Liu
    Kai-li Li
    Hai-ying Luan
    Wen-hui Wang
    Zhao-yu Chen
    Multimedia Tools and Applications, 2022, 81 : 4979 - 4990
  • [47] Learning to Select Base Classes for Few-shot Classification
    Zhou, Linjun
    Cui, Peng
    Jia, Xu
    Yang, Shiqiang
    Tian, Qi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4623 - 4632
  • [48] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [49] AMCRN: Few-Shot Learning for Automatic Modulation Classification
    Zhou, Quan
    Zhang, Ronghui
    Mu, Junsheng
    Zhang, Hongming
    Zhang, Fangpei
    Jing, Xiaojun
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 542 - 546
  • [50] LEARNING STYLE CORRELATION FOR ELABORATE FEW-SHOT CLASSIFICATION
    Kim, Junho
    Kim, Minsu
    Kim, Jung Uk
    Lee, Hong Joo
    Lee, Sangmin
    Hong, Joanna
    Ro, Yong Man
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1791 - 1795