Discrete element simulating the hydrodynamic effects in acoustic agglomeration of micron-sized particles

被引:26
|
作者
Maknickas, Algirdas [1 ]
Markauskas, Darius [1 ]
Kacianauskas, Rimantas [1 ]
机构
[1] Vilnius Gediminas Tech Univ, Inst Mech, Fac Mech, J Basanaviciaus St 28, LT-03224 Vilnius, Lithuania
关键词
Acoustic agglomeration; acoustic wake; aerosol; discrete element method; hydrodynamic radiation pressure; orthokinetic collision; AEROSOL-PARTICLES; FLOW; FIELD; VISUALIZATION; ULTRASOUND; MODEL; WAKE; DEM;
D O I
10.1080/02726351.2016.1156793
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Numerical simulation of the acoustic agglomeration of micron-sized aerosol particles by a discrete element method (DEM) is demonstrated. The conventional DEM technique used in granular dynamics is modified for simulation of the acoustically induced attractive motion of particles in an incompressible fluid. The problem-specific orthokinetic collision, acoustic wake, and mutual radiation pressure effects yielding binary attraction and sticking of the particles are considered within the DEM approach. The acoustically induced agglomeration of two aerosol particles and 3D particles' system is illustrated by numerical results. Numerical values of the agglomeration time of two particles obtained for a wide range of acoustic frequencies are analyzed. Comparison of various hydrodynamic effects with available experimental data indicates an overestimated contribution of the mutual radiation pressure model. The performance of the DEM technique and specific features concerning long-range interactions between particles are demonstrated by simulating 3D particles' systems. The obtained numerical results illustrating the variation of number concentration with time are compared to available experimental data of coal-fired fly ash particles' agglomeration; a relatively good agreement with the acoustic wake mechanism is observed.
引用
下载
收藏
页码:453 / 460
页数:8
相关论文
共 50 条
  • [21] The manipulation of micron-sized metal particles by pulse laser
    Chen Jimin
    Shun Daqing
    Zhong Xiajun
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION III, 2006, 6326
  • [22] Optically controlled grippers for manipulating micron-sized particles
    Gibson, Graham
    Barron, Louise
    Beck, Fiona
    Whyte, Graeme
    Padgett, Miles
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [23] EXTENSION OF THE GELATIN METHOD FOR THE DETECTION OF MICRON-SIZED PARTICLES
    LODGE, JP
    FANZOI, HM
    ANALYTICAL CHEMISTRY, 1954, 26 (11) : 1829 - 1829
  • [24] PREPARATION OF MICRON-SIZED DROPLETS AND THEIR HYDRODYNAMIC BEHAVIOR IN QUIESCENT WATER
    Deng, Chaojun
    Huang, Weixing
    Wang, Haoyuan
    Cheng, Shimeng
    He, Xiongyuan
    Xu, Boya
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (02) : 709 - 720
  • [25] Extraction of micron-sized particles from a HeII bath
    Gnos, M.
    Fuzier, S.
    Van Sciver, S. W.
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 53A AND 53B, 2008, 985 : 641 - 647
  • [26] Micron-sized diamond particles are internalized by endothelial cells
    Walkowiak, Bogdan
    Okroj, Wieslawa
    Jerczynska, Hanna
    Pawlowska, Zofia
    DIAMOND AND RELATED MATERIALS, 2009, 18 (04) : 651 - 656
  • [27] Modelling diffusion impedance in the sensing of micron-sized particles
    Yeh, Johnny
    Zhu, Bicheng
    Wang, Kevin I-Kai
    Salcic, Zoran
    Kannappan, Karthik
    Partridge, Ashton
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 237 : 329 - 340
  • [28] MONODISPERSED, MICRON-SIZED POLYSTYRENE PARTICLES BY DISPERSION POLYMERIZATION
    OBER, CK
    LOK, KP
    HAIR, ML
    JOURNAL OF POLYMER SCIENCE PART C-POLYMER LETTERS, 1985, 23 (02) : 103 - 108
  • [29] DETERMINATION OF MICRON-SIZED PARTICLES - DETECTION OF POTASSIUM ION
    TUFTS, BJ
    ANALYTICAL CHEMISTRY, 1959, 31 (02) : 242 - 243
  • [30] ANALYSIS OF MICRON-SIZED PARTICLES - DETERMINATION OF PARTICLE SIZE
    LODGE, JP
    ROSS, HF
    SUMIDA, WK
    TUFTS, BJ
    ANALYTICAL CHEMISTRY, 1956, 28 (03) : 423 - 424