Critical Challenges in Rechargeable Aprotic Li-O2 Batteries

被引:366
|
作者
Feng, Ningning [2 ]
He, Ping [1 ,2 ]
Zhou, Haoshen [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat & Technol, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
LITHIUM-OXYGEN BATTERIES; LI-AIR BATTERIES; HIGH-PERFORMANCE CATHODE; REDUCED GRAPHENE OXIDE; IN-SITU; BIFUNCTIONAL CATALYST; DIMETHYL-SULFOXIDE; ELECTROCHEMICAL PERFORMANCE; ALPHA-MNO2; NANORODS; EVOLUTION REACTIONS;
D O I
10.1002/aenm.201502303
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aprotic Li-O-2 batteries are one of the most promising next-generation battery technologies that can deliver extremely high energy density. In the past decades, this technology has attracted worldwide attention, and considerable progress has been achieved. However, numerous critical scientific challenges remain to be solved for practical applications. A specific discussion of recent progress from the perspective of the stable aprotic Li-O-2 system with high energy efficiency is presented. The discussion is highlighted on the reaction mechanisms on air cathode, stability of cell components in semi-open surroundings, and improvement of battery performance by catalyst design. Challenges and perspectives are also presented. This study provides an intensive understanding of aprotic Li-O-2 batteries and offers an important guideline for developing reversible and high-efficiency Li-O-2 batteries.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory
    Bhatt, Mahesh Datt
    Geaney, Hugh
    Nolan, Michael
    O'Dwyer, Colm
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (24) : 12093 - 12130
  • [32] Oxide Catalysts for Rechargeable High-Capacity Li-O2 Batteries
    Oh, Si Hyoung
    Nazar, Linda F.
    ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 903 - 910
  • [33] Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries
    Gowda, S. R.
    Brunet, A.
    Wallraff, G. M.
    McCloskey, B. D.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (02): : 276 - 279
  • [34] Redox catalysts for aprotic Li-O2 batteries: Toward a redox flow system
    YunGuang Zhu
    F.W.Thomas Goh
    Qing Wang
    Nano Materials Science, 2019, (03) : 173 - 183
  • [35] Investigation of the Cathode-Catalyst-Electrolyte Interface in Aprotic Li-O2 Batteries
    Schroeder, Marshall A.
    Pearse, Alexander J.
    Kozen, Alexander C.
    Chen, Xinyi
    Gregorczyk, Keith
    Han, Xiaogang
    Cao, Anyuan
    Hu, Liangbing
    Lee, Sang Bok
    Rubloff, Gary W.
    Noked, Malachi
    CHEMISTRY OF MATERIALS, 2015, 27 (15) : 5305 - 5313
  • [36] A Moisture-and Oxygen-Impermeable Separator for Aprotic Li-O2 Batteries
    Kim, Byung Gon
    Kim, Joo-Seong
    Min, Jaeyun
    Lee, Yong-Hee
    Choi, Jeong Hoon
    Jang, Min Chul
    Freunberger, Stefan A.
    Choi, Jang Wook
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) : 1747 - 1756
  • [37] Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries
    Zhang, Peng
    Zhao, Yong
    Zhang, Xinbo
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (08) : 2921 - 3004
  • [38] Hydrogen-Bond-Assisted Solution Discharge in Aprotic Li-O2 Batteries
    Xiong, Qi
    Li, Chaole
    Li, Ziwei
    Liang, Yulong
    Li, Jianchen
    Yan, Junmin
    Huang, Gang
    Zhang, Xinbo
    ADVANCED MATERIALS, 2022, 34 (23)
  • [39] A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries
    Kundu, Dipan
    Black, Robert
    Berg, Erik Jaemstorp
    Nazar, Linda F.
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) : 1292 - 1298
  • [40] Redox catalysts for aprotic Li-O2 batteries: Toward a redox flow system
    Zhu, YunGuang
    Goh, F. W. Thomas
    Wang, Qing
    NANO MATERIALS SCIENCE, 2019, 1 (03) : 173 - 183