Excitonic polarons in low-dimensional transition metal dichalcogenides

被引:22
|
作者
Thilagam, A. [1 ]
机构
[1] Univ S Australia, Informat Technol, Engn & Environm, Mawson Lakes, SA 5095, Australia
关键词
Excitonic polarons; Mono layers; Transition metal dichalcogenides; Exciton-phonon interaction; Binding energy; Self-trapping; FEW-LAYER MOS2; QUASI-2-DIMENSIONAL EXCITONS; PHONON INTERACTION; PHOTOLUMINESCENCE; ELECTRON; LOCALIZATION; DYNAMICS; LIGHT; MONO;
D O I
10.1016/j.physb.2015.02.015
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We examine the excitonic polaron properties of common monolayer transition metal dichalcogenides (Mos(2), MoSe2, WS2 and WSe2). The excitonic polaron is formed when excitons interact with acoustic or optical phonons via coupling to the deformation potentials associated with the conduction and valence bands. A unitary transformation which performs an approximate diagonalization of the exciton-phonon operator is used to evaluate the ground state energy of the excitonic polaron. We derive analytical expressions of the changes in the excitonic polaron energy and mass at small exciton wavevectors involving the deformation potential due to optical phonons. The polaronic effect of the monolayer transition metal dichalcogenides is examined by comparing changes in the energy gap shift and effective masses based on known deformation potential constants for carrier-phonon interactions. Our results indicate the occurrence of comparable energy shifts when the ground state exciton interacts with optical or acoustic phonons. We extend our calculations to explore the influence of exciton-lattice interactions on the binding energies and the self-trapping of excitons in two-dimensional layers of transition metal dichalcogenides. (C) 2015 Elsevier B.V. All rights reserved
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [31] Tuning Intraband and Interband Transition Rates via Excitonic Correlation in Low-Dimensional Semiconductors
    Planelles, Josep
    Achtstein, Alexander W.
    Scott, Riccardo
    Owschimikow, Nina
    Woggon, Ulrike
    Climente, Juan I.
    ACS PHOTONICS, 2018, 5 (09): : 3680 - 3688
  • [32] Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures
    Liu, Yulun
    Zhu, Yaojie
    Yan, Zuowei
    Bai, Ruixue
    Zhang, Xilin
    Ren, Yanbo
    Cheng, Xiaoyu
    Ma, Hui
    Jiang, Chongyun
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2024, 18 (02)
  • [33] Phase transition of metal nanowires confined in a low-dimensional nanospace
    Shibuta, Yasushi
    CHEMICAL PHYSICS LETTERS, 2012, 532 : 84 - 89
  • [34] MAGNETIC ORDER OF LOW-DIMENSIONAL TRANSITION-METAL SYSTEMS
    HAROUN, A
    CHOUAIRI, A
    OUANNASSER, S
    DREYSSE, H
    FABRICIUS, G
    LLOIS, AM
    SURFACE SCIENCE, 1994, 307 : 1087 - 1090
  • [35] Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides
    Berkelbach, Timothy C.
    Reichman, David R.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 9, 2018, 9 : 379 - 396
  • [36] Low-Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors
    Li, Bang Lin
    Wang, Jinping
    Zou, Hao Lin
    Garaj, Slaven
    Lim, Chwee Teck
    Xie, Jianping
    Li, Nian Bing
    Leong, David Tai
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (39) : 7034 - 7056
  • [37] Theory of second-order excitonic nonlinearities in transition metal dichalcogenides
    Mkrtchian, Garnik F.
    Knorr, Andreas
    Selig, Malte
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [38] Nonlinear excitonic spin Hall effect in monolayer transition metal dichalcogenides
    Taghizadeh, A.
    Pedersen, T. G.
    2D MATERIALS, 2020, 7 (01)
  • [39] Disorder-induced broadening of excitonic resonances in transition metal dichalcogenides
    Dwedari, Magdulin
    Brem, Samuel
    Feierabend, Maja
    Malic, Ermin
    PHYSICAL REVIEW MATERIALS, 2019, 3 (07)
  • [40] Excitonic Emission in van der Waals Nanotubes of Transition Metal Dichalcogenides
    Shubina, Tatiana V.
    Remskar, Maja
    Davydov, Valery Yu.
    Belyaev, Kirill G.
    Toropov, Alexey A.
    Gil, Bernard
    ANNALEN DER PHYSIK, 2019, 531 (06)