Flexible and Discriminative Non-linear Embedding with Feature Selection for Image Classification

被引:0
|
作者
Zhu, R. [1 ,2 ]
Dornaika, F. [3 ,4 ]
Ruichek, Y. [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, Lab Elect Informat & Image, Belfort, France
[2] Univ Basque Country, San Sebastian, Spain
[3] Univ Basque Country, UPV EHU, San Sebastian, Spain
[4] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
关键词
Semi-supervised learning; discriminative nonlinear embedding; sparse regression; feature selection; DIMENSIONALITY REDUCTION; RECOGNITION; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the past years, various graph-based data embedding algorithms were proposed and used in machine learning and pattern recognition fields. This paper introduces a graph-based non-linear embedding learning algorithm for image classification and recognition. The proposed embedding method can be used for supervised and semi-supervised learning settings. The proposed criterion allows the simultaneous estimation of a linear and a non-linear embedding. It integrates manifold smoothness, Sparse Regression and Margin Discriminant Embedding. The deployed sparse regression implicitly performs feature selection on the original features of the data matrix and of the linear transform. The proposed method is applied to four image datasets: 8 Sports Event Categories dataset, Scene 15 dataset, ORL Face dataset and COIL-20 Object dataset. The experiments demonstrate the effectiveness of the proposed embedding method.
引用
收藏
页码:3192 / 3197
页数:6
相关论文
共 50 条
  • [21] LOCAL FEATURE EMBEDDING FOR SUPERVISED IMAGE CLASSIFICATION
    Li, Junxia
    Rajan, Deepu
    Yang, Jian
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1300 - 1304
  • [22] Hierarchical Discriminative Feature Learning for Hyperspectral Image Classification
    Zhang, Xiangrong
    Liang, Yunlong
    Zheng, Yaoguo
    An, Jinliang
    Jiao, L. C.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (04) : 594 - 598
  • [23] Discriminative Data Transform for Image Feature Extraction and Classification
    Song, Yang
    Cai, Weidong
    Huh, Seungil
    Chen, Mei
    Kanade, Takeo
    Zhou, Yun
    Feng, Dagan
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 : 452 - 459
  • [24] Fuzzy-rough discriminative feature selection and classification algorithm, with application to microarray and image datasets
    Kumar P, Pramod
    Vadakkepat, Prahlad
    Poh, Loh Ai
    APPLIED SOFT COMPUTING, 2011, 11 (04) : 3429 - 3440
  • [25] Learning Non-Linear Reconstruction Models for Image Set Classification
    Hayat, Munawar
    Bennamoun, Mohammed
    An, Senjian
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1915 - 1922
  • [26] EMBEDDING OF NON-LINEAR OPERATORS AND A PRIORI ESTIMATES FOR SOLUTIONS OF NON-LINEAR EQUATIONS
    POKHOZHAEV, SI
    DOKLADY AKADEMII NAUK SSSR, 1982, 266 (05): : 1063 - 1066
  • [27] Contemporary Classification on Medical Data based on Non-Linear Feature Extraction
    Aribarg, Thannob
    Supratid, Siriporn
    Lursinsap, Chidchanok
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE OF COMPUTATIONAL SCIENCES AND ITS APPLICATIONS, 2009, : 17 - +
  • [28] Non-linear speech feature extraction for phoneme classification and speaker recognition
    Chetouani, M
    Faundez-Zanuy, M
    Gas, B
    Zarader, JL
    NONLINEAR SPEECH MODELING AND APPLICATIONS, 2005, 3445 : 344 - 350
  • [29] Heartbeat classification using different classifiers with non-linear feature extraction
    Li, Hongqiang
    Feng, Xiuli
    Cao, Lu
    Zhang, Cheng
    Tang, Chunxiao
    Li, Enbang
    Liang, Huan
    Chen, Xuelong
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2016, 38 (09) : 1033 - 1040
  • [30] Time-domain non-linear feature parameter for consonant classification
    Thasleema, T. M.
    Prajith, P.
    Narayanan, N. K.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2012, 15 (02) : 227 - 239