Machine learning applications in macromolecular X-ray crystallography

被引:10
|
作者
Vollmar, Melanie [1 ]
Evans, Gwyndaf [1 ,2 ]
机构
[1] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Harwell, Berks, England
[2] Rosalind Franklin Inst, Harwell Sci & Innovat Campus, Harwell, Berks, England
基金
英国生物技术与生命科学研究理事会;
关键词
Machine learning; big data; automation; macromolecular X-ray crystallography; synchrotron; structural biology; PROTEIN-STRUCTURE DETERMINATION; STRUCTURE PREDICTION; STRUCTURAL GENOMICS; PATTERN-RECOGNITION; NEURAL-NETWORKS; AUTOMATED CLASSIFICATION; SECONDARY STRUCTURE; RECEPTIVE FIELDS; DATA-COLLECTION; WEB SERVER;
D O I
10.1080/0889311X.2021.1982914
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
After more than half a century of evolution, machine learning and artificial intelligence, in general, are entering a truly exciting era of broad application in commercial and research sectors. In X-ray crystallography, and its application to structural biology, machine learning is finding a home within expert and automated systems, is forecasting experiment and data analysis outcomes, is predicting whether crystals can be grown and even generating macromolecular structures. This review provides a historical perspective on AI and machine learning, offers an introduction and guide to its application in crystallography and concludes with topical examples of how it is currently influencing macromolecular crystallography.
引用
收藏
页码:54 / 101
页数:48
相关论文
共 50 条
  • [31] Uniqueness for ab initio phase retrieval in macromolecular X-ray crystallography
    Arnal, Romain D.
    Millane, Rick P.
    2015 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2015,
  • [32] Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources
    Schmidt, Marius
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06)
  • [33] The potential benefits of using higher X-ray energies for macromolecular crystallography
    Dickerson, Joshua L.
    Garman, Elspeth F.
    JOURNAL OF SYNCHROTRON RADIATION, 2019, 26 : 922 - 930
  • [34] A new macromolecular crystallography beamline for softer X-ray at the Photon Factory
    Matsugaki, Naohiro
    Yamada, Yusuke
    Hiraki, Masahiko
    Igarashi, Noriyuki
    Yamamoto, Shigeru
    Tsuchiya, Kimichika
    Shioya, Tatsuro
    Maezawa, Hideki
    Asaoka, Seiji
    Miyauchi, Hiroshi
    Tahara, Toshihiro
    Tanimoto, Yasunori
    Wakatsuki, Soichi
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C175 - C175
  • [35] PILATUS:: a two-dimensional X-ray detector for macromolecular crystallography
    Eikenberry, EF
    Brönnimann, C
    Hülsen, G
    Toyokawa, H
    Horisberger, R
    Schmitt, B
    Schulze-Briese, C
    Tomizaki, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 501 (01): : 260 - 266
  • [36] An evolutionary computational approach to the phase problem in macromolecular X-ray crystallography
    Webster, G
    Hilgenfeld, R
    ACTA CRYSTALLOGRAPHICA SECTION A, 2001, 57 : 351 - 358
  • [37] X-RAY-DETECTORS FOR MACROMOLECULAR CRYSTALLOGRAPHY
    GRUNER, SM
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (05) : 765 - 769
  • [38] X-RAY CRYSTALLOGRAPHY
    BRAGG, L
    SCIENTIFIC AMERICAN, 1968, 219 (01) : 58 - &
  • [39] X-RAY CRYSTALLOGRAPHY
    KILBOURN, BT
    CHEMISTRY & INDUSTRY, 1970, (03) : 75 - &
  • [40] X-ray crystallography
    Bombicz, Petra
    CRYSTALLOGRAPHY REVIEWS, 2016, 22 (01) : 79 - 81