Synthesis of three-dimensional cross-linked MnO@C composite as high-performance anode material for lithium-ion batteries

被引:15
|
作者
Zhou, Xiangyang [1 ]
Bai, Tao [1 ]
Yang, Juan [1 ]
Wen, Kang [1 ]
Liu, Chongwu [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoparticles; Three-dimensional cross-linked structure; MnO@C composite; Lithium-ion battery; N-DOPED CARBON; STORAGE PERFORMANCE; FACILE FABRICATION; HIGH-CAPACITY; NANOCOMPOSITES; CAPABILITY; NANOCRYSTALS; NETWORKS; HYBRID; CELLS;
D O I
10.1007/s11581-015-1609-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO@C composites with three-dimensional cross-linked structure were designed and fabricated through hydrothermal treatment. Cation exchange resin was used as the precursor to create a three-dimensional cross-linked porous carbon structure, which was evenly decorated by nanosized MnO particles. When compared with pristine MnO, those MnO@C composites showed much better stability during charge-discharge cycling, retaining a specific capacity of 615 mAh g(-1) (62.5 wt% MnO) after 100 cycles at a current density of 0.2 A g(-1). This could be ascribed to the special three-dimensional cross-linked porous carbon that not only accelerated the transport of Li+ ions but also buffered the volume change and prevented agglomeration of MnO particles during the repeated lithiation and delithiation process.
引用
收藏
页码:779 / 788
页数:10
相关论文
共 50 条
  • [31] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Fu, Yuan-Xiang
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Lyu, Shu-Shen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (05) : 5092 - 5097
  • [32] An elastic cross-linked polymeric binder for high-performance silicon/ graphite composite anodes in lithium-ion batteries
    Son, Ho-Jun
    Reddy, B. S.
    Na, Ho-Jun
    Kim, Joo-Hyun
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    Cho, Gyu-Bong
    Cho, Kwon-Koo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [33] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 : 199 - 205
  • [34] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    RareMetals, 2019, 38 (03) : 199 - 205
  • [35] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Yuan-Xiang Fu
    Xian-Yinan Pei
    Dong-Chuan Mo
    Shu-Shen Lyu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5092 - 5097
  • [36] Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries
    Wang, Bao
    Wu, Xing-Long
    Shu, Chun-Ying
    Guo, Yu-Guo
    Wang, Chun-Ru
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (47) : 10661 - 10664
  • [37] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [38] Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety
    Park, Sae-Rom
    Jung, Yun-Chae
    Shin, Won-Kyung
    Ahn, Kyoung Ho
    Lee, Chul Haeng
    Kim, Dong-Won
    JOURNAL OF MEMBRANE SCIENCE, 2017, 527 : 129 - 136
  • [39] Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries
    Ma, Zhiying
    Cao, Hailiang
    Zhou, Xufeng
    Deng, Wei
    Liu, Zhaoping
    RSC ADVANCES, 2017, 7 (26): : 15857 - 15863
  • [40] Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries
    Xiao, Chengmao
    Du, Ning
    Shi, Xianxing
    Zhang, Hui
    Yang, Deren
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) : 20494 - 20499