Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-β Production

被引:90
|
作者
Nistal-Villan, Estanislao
Gack, Michaela U. [6 ,7 ]
Martinez-Delgado, Gustavo
Maharaj, Natalya P. [6 ,7 ]
Inn, Kyung-Soo [8 ]
Yang, Heyi [4 ]
Wang, Rong [4 ]
Aggarwal, Aneel K. [5 ]
Jung, Jae U. [6 ,7 ,8 ]
Garcia-Sastre, Adolfo [1 ,2 ,3 ]
机构
[1] Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA
[2] Mt Sinai Sch Med, Div Infect Dis, Dept Med, New York, NY 10029 USA
[3] Mt Sinai Sch Med, Global Hlth & Emerging Pathogens Inst, New York, NY 10029 USA
[4] Mt Sinai Sch Med, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] Mt Sinai Sch Med, Dept Struct & Chem Biol, New York, NY 10029 USA
[6] Harvard Univ, New England Reg Primate Res Ctr, Sch Med, Dept Microbiol & Mol Genet, Southborough, MA 01772 USA
[7] Harvard Univ, New England Reg Primate Res Ctr, Sch Med, Div Tumor Virol, Southborough, MA 01772 USA
[8] Univ So Calif, Keck Sch Med, Dept Mol Microbiol & Immunol, Los Angeles, CA 90033 USA
基金
美国国家卫生研究院;
关键词
NF-KAPPA-B; E3 UBIQUITIN LIGASE; DOUBLE-STRANDED-RNA; INDUCIBLE GENE-I; INFLUENZA-A; TRANSCRIPTION FACTORS; ADAPTER PROTEIN; NS1; PROTEIN; INDUCTION; RECOGNITION;
D O I
10.1074/jbc.M109.089912
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.
引用
收藏
页码:20252 / 20261
页数:10
相关论文
共 50 条
  • [21] Role of RIG-I in tumor endothelium.
    Baris, Adrian
    Anand, Sudarshan
    Khou, Sokchea
    JOURNAL OF IMMUNOLOGY, 2022, 208 (01):
  • [22] IKKE negatively regulates RIG-I via direct phosphorylation
    Zhang, Xiaoqing
    Yu, Haiyang
    Zhao, Jun
    Li, Xiuqing
    Li, Jiada
    He, Jiantai
    Xia, Zanxian
    Zhao, Jinfeng
    JOURNAL OF MEDICAL VIROLOGY, 2016, 88 (04) : 712 - 718
  • [23] Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I
    Zhou, Zhihai
    Sun, Yuan
    Yan, Xiaoling
    Tang, Xiaoyu
    Li, Qianniu
    Tan, Yaorong
    Lan, Tian
    Ma, Jingyun
    VIRUS RESEARCH, 2020, 278
  • [24] Melanoma suppression by quercein is correlated with RIG-I and type I interferon signaling
    Peng, Danhong
    Chen, Linjiao
    Sun, Yang
    Sun, Libo
    Yin, Qianqian
    Deng, Siyu
    Niu, Liman
    Lou, Fangzhou
    Wang, Zhikai
    Xu, Zhenyao
    Wang, Conghui
    Fan, Li
    Wang, Hong
    Wang, Honglin
    BIOMEDICINE & PHARMACOTHERAPY, 2020, 125
  • [25] RIG-I is a key antiviral interferon-stimulated gene against hepatitis E virus dispensable of interferon production
    Xu, L.
    Wang, W.
    Li, Y.
    Zhou, X.
    Yin, Y.
    Wang, Y.
    de Man, R. A.
    Van Der Laan, L. J. W.
    Huang, F.
    Kamar, N.
    Peppelenbosch, M. P.
    Pan, Q.
    JOURNAL OF HEPATOLOGY, 2017, 66 (01) : S59 - S60
  • [26] RIG-I Is a Key Antiviral Interferon-Stimulated Gene Against Hepatitis E Virus Regardless of Interferon Production
    Xu, Lei
    Wang, Wenshi
    Li, Yunlong
    Zhou, Xinying
    Yin, Yuebang
    Wang, Yijin
    de Man, Robert A.
    van der Laan, Luc J. W.
    Huang, Fen
    Kamar, Nassim
    Peppelenbosch, Maikel P.
    Pan, Qiuwei
    HEPATOLOGY, 2017, 65 (06) : 1823 - 1839
  • [27] Essential role of the N-terminal domain in the regulation of RIG-I ATPase activity
    Gee, Peter
    Chua, Pong Kian
    Gevorkyan, Jirair
    Klumpp, Klaus
    Najera, Isabel
    Swinney, David C.
    Deval, Jerome
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (14) : 9488 - 9496
  • [28] Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-β production
    Luo, Jingyi
    Fang, Liurong
    Dong, Nan
    Fang, Puxian
    Ding, Zhen
    Wang, Dang
    Chen, Huanchun
    Xiao, Shaobo
    VIROLOGY, 2016, 495 : 10 - 17
  • [29] RIG-I - Expression as a negative prognostic Factor in Endometrial Carcinoma
    Mitter, S.
    Mueller, L.
    Mannewitz, M.
    Keilmann, L.
    Meister, S.
    Kolben, T. M.
    Schmoeckel, E.
    Burges, A.
    Trillsch, F.
    Czogalla, B.
    Mahner, S.
    Kessler, M.
    Jeschke, U.
    Kolben, T.
    Beyer, S.
    GEBURTSHILFE UND FRAUENHEILKUNDE, 2022, 82 (06) : 646 - 646
  • [30] Functional role of RIG-I family in antiviral responses
    Kato, Hiroki
    Akira, Shizuo
    JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 2007, 27 (08): : 691 - 691