Multi Objective Evolutionary Algorithm Applied to the Optimal Power Flow Problem

被引:7
|
作者
Amorim, E. A. [1 ]
Hashimoto, S. H. M. [1 ]
Lima, F. G. M. [1 ]
Mantovani, J. R. S. [2 ]
机构
[1] Univ Fed Mato Grosso UFMS, Depto Engn Eletr, Campo Grande, MS, Brazil
[2] UNESP, Depto Engn Eletr, Ilha Solteira, SP, Brazil
关键词
Multiobjective Evolutionary Algorithm; Optimal Power Flow; Multiobjective Optimization; SECURITY; DISPATCH; SYSTEM;
D O I
10.1109/TLA.2010.5538398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.
引用
收藏
页码:236 / 244
页数:9
相关论文
共 50 条
  • [1] A Multi-objective Differential Evolutionary Algorithm Applied in Antenna Optimal Problem
    Fan, Yuanyuan
    Liang, Qingzhong
    Zeng, Sanyou
    [J]. COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2012, 316 : 250 - 257
  • [3] Multi-objective harmony search algorithm for optimal power flow problem
    Sivasubramani, S.
    Swarup, K. S.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) : 745 - 752
  • [4] Comparison and evaluation on multi-objective evolutionary algorithm for optimal reactive power flow
    Li, Hongxin
    Li, Yinhong
    Li, Zhihuan
    [J]. Dianwang Jishu/Power System Technology, 2013, 37 (06): : 1651 - 1658
  • [5] Solution of constrained mixed-integer multi-objective optimal power flow problem considering the hybrid multi-objective evolutionary algorithm
    Ali, Aamir
    Abbas, Ghulam
    Keerio, Muhammad Usman
    Koondhar, Mohsin Ali
    Chandni, Kiran
    Mirsaeidi, Sohrab
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (01) : 66 - 90
  • [6] Multi - Objective Optimal Power Flow Problem of Power System Based on Differential Search Algorithm
    Jiang, Yuechun
    Liu, Ailing
    He, Zhongnan
    Zhang, Ke
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 314 - 318
  • [7] A New Multi-objective Jaya Algorithm for Solving the Optimal Power Flow Problem
    Berrouk, F.
    Bouchekara, H. R. E. H.
    Chaib, A. E.
    Abido, M. A.
    Bounaya, K.
    Javaid, M. S.
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2018, 14 (03) : 165 - 181
  • [8] Differential search algorithm for solving multi-objective optimal power flow problem
    Abaci, Kadir
    Yamacli, Volkan
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 79 : 1 - 10
  • [9] Research on Improved Bat Algorithm for Multi-objective Optimal Power Flow Problem
    Chen, Gonggui
    Qian, Jie
    Zhang, Zhizhong
    [J]. 2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1263 - 1268
  • [10] Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm
    Yuan, Xiaohui
    Zhang, Binqiao
    Wang, Pengtao
    Liang, Ji
    Yuan, Yanbin
    Huang, Yuehua
    Lei, Xiaohui
    [J]. ENERGY, 2017, 122 : 70 - 82