Optimization of Sensor Placement in a Bridge Structural Health Monitoring System

被引:0
|
作者
Avendano, Juan C. [1 ]
Otero, Luis Daniel [1 ]
Otero, Carlos [1 ]
机构
[1] Florida Inst Technol, Dept Comp Engn & Sci, Melbourne, FL 32901 USA
关键词
structural health monitoring; optimal sensor placement; average filtering algorithm; deformation; finite element analysis; SHM;
D O I
10.1109/SysCon48628.2021.9447077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an optimal sensor placement (OSP) technique designed to be implemented on Structural Health Monitoring (SHM) systems. A steel bridge was modeled in ANSYS environment and four load values were applied at pre-identified locations to generate data. Each experiment yielded an array of data that contains the location, as well as corresponding deformation and safety factors. Measurements were taken at 1,000,000 positions on the bridge and a library of a similar number of failure modes was created for each experiment. Each data library was processed as a multi-dimensional matrix by applying the average filtering algorithm. Local extrema were identified in terms of the corresponding deformation and safety factors by removing repeated values at nearby locations. The results provided a list of 100 locations with maximum deformation or minimum safety factors, containing the optimized positions on the bridge for placement of sensors. The final developed system that includes this placement algorithm capable of simulating multiple load conditions on structures, identifying possible failure points, and detecting and predicting failure scenarios. Both hardware and software implementations of a model of a bridge were performed as a pilot project to validate the proposed system.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [31] Structural health monitoring of signature bridge in Delhi - the bridge-structural-health-monitoring-system for the Wazirabad Bridge project
    Furtner, P.
    Della Ca, D.
    Gosh, Ch.
    BRIDGE MAINTENANCE, SAFETY, MANAGEMENT AND LIFE EXTENSION, 2014, : 2677 - 2682
  • [32] Sensor Placement Optimization in Structural Health Monitoring Using Cluster-in-Cluster Firefly Algorithm
    Zhou, Guang-Dong
    Yi, Ting-Hua
    Li, Hong-Nan
    ADVANCES IN STRUCTURAL ENGINEERING, 2014, 17 (08) : 1103 - 1115
  • [33] Integrated Bridge Structural Health Monitoring System
    Elmi, Mohsen
    Ghafory-Ashtiany, Mohsen
    Bahar, Omid
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2024, 48 (01) : 149 - 168
  • [34] Integrated Bridge Structural Health Monitoring System
    Mohsen Elmi
    Mohsen Ghafory-Ashtiany
    Omid Bahar
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024, 48 : 149 - 168
  • [35] Design and Deployment of Bridge Structural Health Monitoring System Based on Wireless Sensor Network
    Liu, Zhuo
    Wang, Bingwen
    Yang, Wenjun
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [36] Evaluating Sensor Placement for System Health Condition Monitoring
    Gu Hongqiang
    Zhao Jianmin
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 1838 - 1842
  • [37] A Framework for Optimal Sensor Placement to Support Structural Health Monitoring
    Li, Shen
    Coraddu, Andrea
    Brennan, Feargal
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (12)
  • [38] OPTIMAL SENSOR PLACEMENT METHOD FOR THE PURPOSE OF STRUCTURAL HEALTH MONITORING
    Lam, H. F.
    Chow, H. M.
    Yin, T.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON TALL BUILDINGS, 2010, : 183 - 192
  • [39] The state of art of sensor placement methods in structural health monitoring
    Li, Dong-Sheng
    Li, Hong-Nan
    SMART STRUCTURES AND MATERIALS 2006: SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL , AND AEROSPACE SYSTEMS, PTS 1 AND 2, 2006, 6174
  • [40] Advances and prospects for optimal sensor placement of structural health monitoring
    Yang C.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (17): : 82 - 93