Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation

被引:12
|
作者
Guo, Zekun [1 ]
Wang, Hongjun [1 ]
Kong, Xiangwen [1 ]
Li Shen [1 ]
Jia, Yuepeng [1 ]
机构
[1] Res Inst Petr Explorat & Dev CNPC, Beijing 100083, Peoples R China
关键词
machine learning; sensitivity analysis; production prediction; grey relation analysis; RESERVOIRS; INSIGHTS;
D O I
10.3390/en14175509
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The production of a single gas well is influenced by many geological and completion factors. The aim of this paper is to build a production prediction model based on machine learning technique and identify the most important factor for production. Firstly, around 159 horizontal wells were collected, targeting the Duvernay Formation with detailed geological and completion records. Secondly, the key factors were selected using grey relation analysis and Pearson correlation. Then, three statistical models were built through multiple linear regression (MLR), support vector regression (SVR), gaussian process regression (GPR). The model inputs include fluid volume, proppant amount, cluster counts, stage counts, total horizontal lateral length, gas saturation, total organic carbon content, condensate-gas ratio. The model performance was assessed by root mean squared errors (RMSE) and R-squared value. Finally, sensitivity analysis was applied based on best performance model. The analysis shows following conclusions: (1) GPR model shows the best performance with the highest R-squared value and the lowest RMSE. In the testing set, the model shows a R-squared of 0.8 with a RMSE of 280.54 x 10(4) m(3) in the prediction of cumulative gas production within 1st 6 producing months and gives a R-squared of 0.83 with a RMSE of 1884.3 t in the prediction of cumulative oil production within 1st 6 producing months (2) Sensitivity analysis based on GPR model indicates that condensate-gas ratio, fluid volume, and total organic carbon content are the most important features to cumulative oil production within 1st 6 producing months. Fluid volume, Stages, and total organic carbon content are the most significant factors to cumulative gas production within 1st 6 producing months. The analysis progress and results developed in this study will assist companies to build prediction models and figure out which factors control well performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Machine learning-based prediction model for distant metastasis of breast cancer
    Duan, Hao
    Zhang, Yu
    Qiu, Haoye
    Fu, Xiuhao
    Liu, Chunling
    Zang, Xiaofeng
    Xu, Anqi
    Wu, Ziyue
    Li, Xingfeng
    Zhang, Qingchen
    Zhang, Zilong
    Cui, Feifei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [22] A Machine Learning-Based Prediction Model for Preterm Birth in Rural India
    Raja, Rakesh
    Mukherjee, Indrajit
    Sarkar, Bikash Kanti
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [23] Towards a Machine Learning-based Model for Corporate Loan Default Prediction
    Berrada, Imane Rhzioual
    Barramou, Fatimazahra
    Alami, Omar Bachir
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 565 - 573
  • [24] Machine Learning-Based Ground Peak Acceleration Attenuation Prediction Model
    Yang, Changwei
    Pan, Yitao
    Zhang, Kaiwen
    Yue, Mao
    Wen, Hao
    Wang, Feng
    JOURNAL OF EARTHQUAKE ENGINEERING, 2025, 29 (02) : 324 - 338
  • [25] Machine learning-based prediction model for hypofibrinogenemia after tigecycline therapy
    Zhu, Jianping
    Zhao, Rui
    Yu, Zhenwei
    Li, Liucheng
    Wei, Jiayue
    Guan, Yan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [26] Machine Learning-Based Model for Prediction of Power Consumption in Smart Grid
    Tiwari, Shamik
    Jain, Anurag
    Yadav, Kusum
    Ramadan, Rabie
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (03) : 323 - 329
  • [27] A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia
    Wang, Guan
    Zhang, Yanbo
    Li, Sijin
    Zhang, Jun
    Jiang, Dongkui
    Li, Xiuzhen
    Li, Yulin
    Du, Jie
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [28] Considerations and prospects for validating a machine learning-based choledocholithiasis prediction model
    Chen, Dexin
    Zhai, Yaqi
    Li, Mingyang
    ENDOSCOPY, 2024, 56 (07) : 553 - 553
  • [29] Machine learning-based risk prediction model for arteriovenous fistula stenosis
    Shu, Peng
    Huang, Ling
    Huo, Shanshan
    Qiu, Jun
    Bai, Haitao
    Wang, Xia
    Xu, Fang
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2025, 30 (01)
  • [30] Machine learning-based prediction model and visual interpretation for prostate cancer
    Chen, Gang
    Dai, Xuchao
    Zhang, Mengqi
    Tian, Zhujun
    Jin, Xueke
    Mei, Kun
    Huang, Hong
    Wu, Zhigang
    BMC UROLOGY, 2023, 23 (01)