On the Maximum Number of Disjoint Chorded Cycles in Graphs

被引:0
|
作者
Gao, Yunshu [1 ]
Li, Guojun [2 ]
机构
[1] Ningxia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Cycles with chords; Ore-type; Quadrilateral;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer and let G = (V(G), E(G)) be a graph with vertical bar V(G)vertical bar >= 4k. In this paper it is proved that if the minimum degree sum is at least 6k - 1 for each pair of nonadjacent vertices in V(G), then G contains k vertex disjoint chorded cycles. This result generalizes the main Theorem of Finkel. Moreover, the degree condition is sharp in general.
引用
收藏
页码:415 / 422
页数:8
相关论文
共 50 条
  • [21] On finding the maximum number of disjoint cuts in Seymour graphs
    Ageev, AA
    ALGORITHMS - ESA'99, 1999, 1643 : 490 - 497
  • [22] Disjoint isolating sets and graphs with maximum isolation number
    Boyer, Geoffrey
    Goddard, Wayne
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 110 - 116
  • [23] Sharp minimum degree conditions for disjoint doubly chorded cycles
    Santana, Michael
    VAN Bonn, Maia
    JOURNAL OF COMBINATORICS, 2024, 15 (02) : 217 - 282
  • [24] On the number of independent chorded cycles in a graph
    Finkel, Daniel
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5265 - 5268
  • [25] On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles
    Elliott, Bradley
    Gould, Ronald J.
    Hirohata, Kazuhide
    GRAPHS AND COMBINATORICS, 2020, 36 (06) : 1927 - 1945
  • [26] On Vertex-Disjoint Chorded Cycles and Degree Sum Conditions
    Gould, Ronald J.
    Hirohata, Kazuhide
    Rorabaugh, Ariel Keller
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 120 : 75 - 90
  • [27] On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles
    Bradley Elliott
    Ronald J. Gould
    Kazuhide Hirohata
    Graphs and Combinatorics, 2020, 36 : 1927 - 1945
  • [28] Packing edge-disjoint cycles in graphs and the cyclomatic number
    Harant, Jochen
    Rautenbach, Dieter
    Recht, Peter
    Regen, Friedrich
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1456 - 1462
  • [29] Edge-disjoint odd cycles in graphs with small chromatic number
    Berge, C
    Reed, B
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (03) : 783 - +
  • [30] EDGE DISJOINT CYCLES IN GRAPHS
    HAO, L
    JOURNAL OF GRAPH THEORY, 1989, 13 (03) : 313 - 322