Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system

被引:0
|
作者
Carrillo, JA [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
D O I
10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.3.CO;2-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to prove the existence of weak solutions of the kinetic Vlasov-Poisson-Fokker-Planck system in bounded domains for attractive or repulsive forces. Absorbing and reflection type boundary conditions are considered for the kinetic equation and zero values for the potential on the boundary. The existence of weak solutions is proved for bounded and integrable initial and boundary data with finite energy. The main difficulty of this problem is to obtain an existence theory for the linear equation. This fact is analysed using a variational technique and the theory of elliptic-parabolic equations of second order. The proof of existence for the initial-boundary value problems is carried out following a procedure of regularization and linearization of the problem. (C) 1998 B. G. Teubner Sturtgart-John Wiley & Sons, Ltd.
引用
收藏
页码:907 / 938
页数:32
相关论文
共 50 条
  • [31] Asymptotic behaviour of the Vlasov-Poisson-Fokker-Planck system in bounded domains
    Bonilla, LL
    Carrillo, JA
    Soler, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 485 - 486
  • [32] Variational formulations for Vlasov-Poisson-Fokker-Planck systems
    Huang, CC
    Jordan, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (09) : 803 - 843
  • [33] High-field limit for the Vlasov-Poisson-Fokker-Planck system
    Nieto, J
    Poupaud, F
    Soler, J
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (01) : 29 - 59
  • [34] Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in one dimension
    Wollman, S
    Ozizmir, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) : 602 - 644
  • [35] Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations
    XIAO Ling
    Department of Mathematics
    College of Applied Sciences
    ScienceinChina(SeriesA:Mathematics), 2006, (02) : 255 - 266
  • [36] A splitting Fourier pseudospectral method for Vlasov-Poisson-Fokker-Planck system
    Wang, Hanquan
    Cheng, Ronghua
    Wu, Xinming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1742 - 1758
  • [37] On the Mean-Field Limit for the Vlasov-Poisson-Fokker-Planck System
    Huang, Hui
    Liu, Jian-Guo
    Pickl, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1915 - 1965
  • [38] The Vlasov-Poisson-Fokker-Planck equation in an interval with kinetic absorbing boundary conditions
    Hwang, Hyung Ju
    Kim, Jinoh
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) : 240 - 282
  • [39] ON THE VLASOV-POISSON-FOKKER-PLANCK EQUATION NEAR MAXWELLIAN
    Hwang, Hyung Ju
    Jang, Juhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 681 - 691
  • [40] Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations
    Ling Xiao
    Fucai Li
    Shu Wang
    Science in China Series A, 2006, 49 : 255 - 266