A Knowledge-Based Artificial Intelligence (AI) to Perform Nested Model Selection From Dynamic Contrast Enhanced (DCE)-MRI Pharmacokinetic Analyses of Brain Tumors in An Animal Model

被引:0
|
作者
Bagher-Ebadian, H. [1 ,2 ]
Nagaraja, T. [1 ]
Cabral, G. [1 ]
Farmer, K. [1 ]
Valadie, O. [1 ]
Acharya, P. [2 ]
Movsas, B. [1 ]
Brown, S. [1 ]
Chetty, I. [1 ]
Ewing, J. [1 ]
机构
[1] Henry Ford Hlth Syst, Detroit, MI USA
[2] Oakland Univ, Rochester, MI 48063 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
WE-C930-Ie
引用
收藏
页码:E500 / E500
页数:1
相关论文
共 30 条
  • [21] Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer
    Meijie Liu
    Ning Mao
    Heng Ma
    Jianjun Dong
    Kun Zhang
    Kaili Che
    Shaofeng Duan
    Xuexi Zhang
    Yinghong Shi
    Haizhu Xie
    Cancer Imaging, 20
  • [22] New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors
    Fan, XB
    Medved, M
    River, JN
    Zamora, M
    Corot, C
    Robert, P
    Bourrinet, P
    Lipton, M
    Culp, RM
    Karczmar, GS
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (03) : 487 - 494
  • [23] Estimating pharmacokinetic parameters from Dynamic Contrast-Enhanced T1-weighted MRI using a three level hierarchical Bayesian model
    Bouchebbah, Kahina
    Zougab, Nabil
    MONTE CARLO METHODS AND APPLICATIONS, 2024, 30 (04): : 437 - 448
  • [24] Dynamic Contrast-Enhanced MRI in the Study of Brain Tumors. Comparison Between the Extended Tofts-Kety Model and a Phenomenological Universalities (PUN) Algorithm
    Bergamino, Maurizio
    Barletta, Laura
    Castellan, Lucio
    Mancardi, Gianluigi
    Roccatagliata, Luca
    JOURNAL OF DIGITAL IMAGING, 2015, 28 (06) : 748 - 754
  • [25] Dynamic Contrast-Enhanced MRI in the Study of Brain Tumors. Comparison Between the Extended Tofts-Kety Model and a Phenomenological Universalities (PUN) Algorithm
    Maurizio Bergamino
    Laura Barletta
    Lucio Castellan
    Gianluigi Mancardi
    Luca Roccatagliata
    Journal of Digital Imaging, 2015, 28 : 748 - 754
  • [26] A deep learning fusion model with evidence-based confidence level analysis for differentiation of malignant and benign breast tumors using dynamic contrast enhanced MRI
    Wu, Yunan
    Wu, Jing
    Dou, Yuting
    Rubert, Nicholas
    Wang, Yi
    Deng, Jie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
  • [27] Automated, fast, robust brain extraction on contrast-enhanced T1-weighted MRI in presence of brain tumors: an optimized model based on multi-center datasets
    Yuen Teng
    Chaoyue Chen
    Xin Shu
    Fumin Zhao
    Lei Zhang
    Jianguo Xu
    European Radiology, 2024, 34 : 1190 - 1199
  • [28] Automated, fast, robust brain extraction on contrast-enhanced T1-weighted MRI in presence of brain tumors: an optimized model based on multi-center datasets
    Teng, Yuen
    Chen, Chaoyue
    Shu, Xin
    Zhao, Fumin
    Zhang, Lei
    Xu, Jianguo
    EUROPEAN RADIOLOGY, 2024, 34 (02) : 1190 - 1199
  • [29] A deep learning model based on self-supervised learning for identifying subtypes of proliferative hepatocellular carcinoma from dynamic contrast-enhanced MRI
    Hui Qu
    Shuairan Zhang
    Xuedan Li
    Yuan Miao
    Yuxi Han
    Ronghui Ju
    Xiaoyu Cui
    Yiling Li
    Insights into Imaging, 16 (1)
  • [30] Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) of Photodynamic Therapy (PDT) Outcome and Associated Changes in the Blood-Brain Barrier Following Pc 4-PDT of Glioma in an Athymic Nude Rat Model
    Belle, Vaijayantee
    Anka, Ali
    Cross, Nathan
    Thompson, Paul
    Mott, Eric
    Sharma, Rahul
    Gray, Kayla
    Zhang, Ruozhen
    Xu, Yueshuo
    Sun, Jiayang
    Flask, Chris A.
    Oleinick, Nancy L.
    Dean, David
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS VIII, PTS 1 AND 2, 2012, 8207