Global well-posedness for the 3D primitive equations in anisotropic framework

被引:7
|
作者
Fang, Daoyuan [1 ]
Han, Bin [2 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
关键词
Primitive equations; Anisotropic spaces; Blow-up criterion; LARGE-SCALE OCEAN; REGULARITY; EXISTENCE; FLUIDS; HEAT;
D O I
10.1016/j.jmaa.2019.123714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the initial boundary value problem of the 3D primitive equations with only horizontal viscosities and horizontal diffusion. We first establish the local well-posedness result of this system, with the initial data belongs to the anisotropic Sobolev pace H-0,H-s(s > 1/2). Then, under the basic and high-order energy estimates, one can extend the local solution to the global one provided that s > 1. The restrictions on the initial data is more weaker than the previous results which are obtained by Cao et al. ((2016) [8] and (2017) [9]), in which the initial data belongs to H-2 and H-1 boolean AND L-infinity, respectively. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Jiu, Quan-sen
    Yu, Huan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 1 - 16
  • [42] Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations
    Quan-sen Jiu
    Huan Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1 - 16
  • [43] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Zhengguang Guo
    Zunzun Zhang
    Zdenĕk Skalák
    Journal of Nonlinear Science, 2023, 33
  • [44] GLOBAL WELL-POSEDNESS OF 3D INCOMPRESSIBLE INHOMOGENEOUS NAVIER-STOKES EQUATIONS
    Qian, Chenyin
    Zhang, Ping
    METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (04) : 507 - 546
  • [45] Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations
    Ye, Zhuan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) : 1111 - 1121
  • [46] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Guo, Zhengguang
    Zhang, Zunzun
    Skalak, Zdenek
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (04)
  • [47] On 3D Hall-MHD Equations with Fractional Laplacians: Global Well-Posedness
    Zhang, Huali
    Zhao, Kun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [48] On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations
    Duan, Ning
    Zhao, Xiaopeng
    AIMS MATHEMATICS, 2020, 5 (06): : 6457 - 6463
  • [49] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Quan-sen JIU
    Huan YU
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 1 - 16
  • [50] Global well-posedness for the 3D incompressible Keller–Segel–Navier–Stokes equations
    Qian Zhang
    Yehua Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70