Efficient feature selection and classification for microarray data

被引:50
|
作者
Li, Zifa [1 ]
Xie, Weibo [1 ]
Liu, Tao [1 ]
机构
[1] Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Fujian, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 08期
基金
中国国家自然科学基金;
关键词
GENE SELECTION; SVM-RFE; CANCER; PREDICTION; ALGORITHM; PATTERNS; TUMOR;
D O I
10.1371/journal.pone.0202167
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Feature selection and classification are the main topics in microarray data analysis. Although many feature selection methods have been proposed and developed in this field, SVM-RFE (Support Vector Machine based on Recursive Feature Elimination) is proved as one of the best feature selection methods, which ranks the features (genes) by training support vector machine classification model and selects key genes combining with recursive feature elimination strategy. The principal drawback of SVM-RFE is the huge time consumption. To overcome this limitation, we introduce a more efficient implementation of linear support vector machines and improve the recursive feature elimination strategy and then combine them together to select informative genes. Besides, we propose a simple resampling method to preprocess the datasets, which makes the information distribution of different kinds of samples balanced and the classification results more credible. Moreover, the applicability of four common classifiers is also studied in this paper. Extensive experiments are conducted on six most frequently used microarray datasets in this field, and the results show that the proposed methods have not only reduced the time consumption greatly but also obtained comparable classification performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Feature Selection for Self-Supervised Classification With Applications to Microarray and Sequence Data
    Kung, Sun-Yuan
    Mak, Man-Wai
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (03) : 297 - 309
  • [32] Microarray Data Classification Using Feature Selection and Regularized Methods with Sampling Methods
    Jyothi, Saddi
    Reddy, Y. Sowmya
    Lavanya, K.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 351 - 358
  • [33] CFSES optimization Feature Selection with neural network classification for microarray data analysis
    Patra, Bichitrananda
    Bisoyi, Sudhansu Sekhar
    2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA 2018), 2018, : 45 - 50
  • [34] DNA microarray data analysis: Effective feature selection for accurate cancer classification
    Patra, Jagdish C.
    Lim, Goh P.
    Meher, Pramod K.
    Ang, Ee Luang
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 260 - 265
  • [35] Combination of Feature Selection Methods for the Effective Classification of Microarray Gene Expression Data
    Sheela, T.
    Rangarajan, Lalitha
    RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 137 - 145
  • [36] A Novel PSO-FLANN Framework of Feature Selection and Classification for Microarray Data
    Parhi, Pournamasi
    Mishra, Debahuti
    Mishra, Sashikala
    Shaw, Kailash
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1644 - 1649
  • [37] Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics
    Iqbal, Muhammad Javed
    Faye, Ibrahima
    Samir, Brahim Belhaouari
    Said, Abas Md
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [38] An Efficient SVM-Based Feature Selection Model for Cancer Classification Using High-Dimensional Microarray Data
    El Kafrawy, Passent
    Fathi, Hanaa
    Qaraad, Mohammed
    Kelany, Ayda K.
    Chen, Xumin
    IEEE ACCESS, 2021, 9 : 155353 - 155369
  • [39] A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification
    Almugren, Nada
    Alshamlan, Hala
    IEEE ACCESS, 2019, 7 : 78533 - 78548
  • [40] Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
    Zhang, XG
    Lu, X
    Shi, Q
    Xu, XQ
    Leung, HCE
    Harris, LN
    D Iglehart, J
    Miron, A
    Liu, JS
    Wong, WH
    BMC BIOINFORMATICS, 2006, 7 (1)