Ellipsoidal and Gaussian Kalman Filter Model for Discrete-Time Nonlinear Systems

被引:8
|
作者
Sun, Ligang [1 ]
Alkhatib, Hamza [1 ]
Kargoll, Boris [2 ]
Kreinovich, Vladik [3 ]
Neumann, Ingo [1 ]
机构
[1] Leibniz Univ Hannover, Geodat Inst Hannover, D-30167 Hannover, Germany
[2] Hsch Anhalt, Inst Geoinformat & Vermessung Dessau, D-06846 Dessau, Germany
[3] Univ Texas El Paso, Dept Comp Sci, El Paso, TX 79968 USA
关键词
Ellipsoidal and Gaussian Kalman filter; state estimation; unknown but bounded uncertainty; nonlinear programming; convex optimization; GUARANTEED STATE ESTIMATION; PARAMETER; SETS;
D O I
10.3390/math7121168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new technique-called Ellipsoidal and Gaussian Kalman filter-for state estimation of discrete-time nonlinear systems in situations when for some parts of uncertainty, we know the probability distributions, while for other parts of uncertainty, we only know the bounds (but we do not know the corresponding probabilities). Similarly to the usual Kalman filter, our algorithm is iterative: on each iteration, we first predict the state at the next moment of time, and then we use measurement results to correct the corresponding estimates. On each correction step, we solve a convex optimization problem to find the optimal estimate for the system's state (and the optimal ellipsoid for describing the systems's uncertainty). Testing our algorithm on several highly nonlinear problems has shown that the new algorithm performs the extended Kalman filter technique better-the state estimation technique usually applied to such nonlinear problems.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Zonotopic Extended Kalman Filter and Fault Detection of Discrete-time Nonlinear Systems applied to a Quadrotor Helicopter
    Wang, Ye
    Puig, Vicenc
    2016 3RD CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2016, : 367 - 372
  • [22] Nonlinear State and Parameter Estimation using Discrete-Time Double Kalman Filter
    Abdollahpouri, Mohammad
    Haring, Mark
    Johansen, Tor Arne
    Takacs, Gergely
    Rohar-Ilkiv, Boris
    IFAC PAPERSONLINE, 2017, 50 (01): : 11632 - 11638
  • [23] An adaptive nonlinear filter of discrete-time system with uncertain covariance using unscented kalman filter
    Li, WC
    Wei, P
    Xiao, XC
    International Symposium on Communications and Information Technologies 2005, Vols 1 and 2, Proceedings, 2005, : 1389 - 1392
  • [24] Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties
    Xiong, K.
    Wei, C. L.
    Liu, L. D.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2012, 18 (01) : 15 - 24
  • [25] A fast convergent extended Kalman observer for nonlinear discrete-time systems
    Guo, LZ
    Zhu, QM
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (13) : 1051 - 1058
  • [26] Strong tracking extended Kalman observer for nonlinear discrete-time systems
    Univ of Henri Poincare, France
    IEEE Trans Autom Control, 8 (1550-1556):
  • [27] Polynomial Extended Kalman Filtering for discrete-time nonlinear Stochastic systems
    Germani, A
    Manes, C
    Palumbo, P
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 886 - 891
  • [28] A strong tracking extended Kalman observer for nonlinear discrete-time systems
    Boutayeb, M
    Aubry, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (08) : 1550 - 1556
  • [29] The damped modified iterated Kalman filter for nonlinear discrete time systems
    Oh, M
    Choi, UJ
    KYBERNETIKA, 1997, 33 (04) : 387 - 398
  • [30] Kalman Filter for Linear Discrete-Time Rectangular Singular Systems Considering Causality
    Zheng, Jinhui
    Wen, Chenglin
    Liu, Weifeng
    MATHEMATICS, 2024, 12 (01)