Influence of Sensor Variations on the Condition of the Magnetostatic Linear Inverse Problem

被引:8
|
作者
Eichardt, Roland [1 ,2 ]
Haueisen, Jens [1 ,2 ]
机构
[1] Ilmenau Univ Technol, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
[2] Jena Univ Hosp, Dept Neurol, Biomagnet Ctr, D-07747 Jena, Germany
关键词
Condition number; linear inverse problem; magnetostatic; optimization of sensor arrays; sensor variations; OPTIMIZATION; LOCALIZATION; LOCATION;
D O I
10.1109/TMAG.2010.2046149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We examine the influence of randomized variations of the sensor directions on the condition of the linear inverse problem in magnetostatics. Sensor arrays with varied sensor directions are compared with arrays using perfectly in parallel aligned sensors. As evaluation criterion the condition number of the related lead field matrix is used. The results reveal that for mono-axial sensor arrays the condition of the linear inverse problem can be considerably improved, when sensors are directed non-uniformly. Furthermore, our findings indicate that also small variations of the sensor Z-positions of planar mono-axial arrays can lead to a better condition.
引用
收藏
页码:3449 / 3452
页数:4
相关论文
共 50 条
  • [21] The inverse problem of the calculus of variations
    Rapoport, IM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1938, 18 : 131 - 135
  • [22] Solving the inverse magnetostatic problem using fictitious magnetic charges
    Wautischer, Gregor
    Bruckner, Florian
    Abert, Claas
    Suess, Dieter
    Koeck, Helmut
    Sanchez, Mikel Eizaguirre
    AIP ADVANCES, 2018, 8 (05)
  • [23] A numerical method for a magnetostatic inverse problem using the edge element
    Shigeta, T
    Onishi, K
    INVERSE PROBLEMS IN ENGINEERING MECHANICS, 1998, : 509 - 518
  • [24] INITIAL DATA ERROR PERTURBATIONS OF THE INVERSE PROBLEM FOR A MAGNETOSTATIC DIPOLE
    ZAIONCHKOVSKII, AY
    SEMYONOV, VG
    SIMONOV, AY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1985, 28 (06): : 17 - 22
  • [25] A mathematical algorithm for solving the inverse problem of magnetostatic flaw detection
    Pechenkov, AN
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2005, 41 (11) : 714 - 718
  • [26] A Mathematical Algorithm for Solving the Inverse Problem of Magnetostatic Flaw Detection
    A. N. Pechenkov
    Russian Journal of Nondestructive Testing, 2005, 41 : 714 - 718
  • [27] A numerical method for a magnetostatic inverse problem using the edge element
    Shigeta, T
    Onishi, K
    INVERSE PROBLEMS AND RELATED TOPICS, 2000, 419 : 145 - 153
  • [28] Influence of sensor calibration uncertainty in the inverse heat conduction problem (IHCP)
    Scarpa, F
    Milano, G
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1999, 36 (04) : 457 - 474
  • [29] Influence of sensor calibration uncertainty in the inverse heat conduction problem (IHCP)
    Dipto. Termoenergetica C., Università di Genova, Via All'Opera Pia 15a, I 16145 Genova, Italy
    Numer Heat Transfer Part B Fundam, 4 (457-474):
  • [30] On an Inverse Linear Programming Problem
    Amirkhanova, G. A.
    Golikov, A. I.
    Evtushenko, Yu. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 295 (01) : S21 - S27