Influence of Sensor Variations on the Condition of the Magnetostatic Linear Inverse Problem

被引:8
|
作者
Eichardt, Roland [1 ,2 ]
Haueisen, Jens [1 ,2 ]
机构
[1] Ilmenau Univ Technol, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
[2] Jena Univ Hosp, Dept Neurol, Biomagnet Ctr, D-07747 Jena, Germany
关键词
Condition number; linear inverse problem; magnetostatic; optimization of sensor arrays; sensor variations; OPTIMIZATION; LOCALIZATION; LOCATION;
D O I
10.1109/TMAG.2010.2046149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We examine the influence of randomized variations of the sensor directions on the condition of the linear inverse problem in magnetostatics. Sensor arrays with varied sensor directions are compared with arrays using perfectly in parallel aligned sensors. As evaluation criterion the condition number of the related lead field matrix is used. The results reveal that for mono-axial sensor arrays the condition of the linear inverse problem can be considerably improved, when sensors are directed non-uniformly. Furthermore, our findings indicate that also small variations of the sensor Z-positions of planar mono-axial arrays can lead to a better condition.
引用
下载
收藏
页码:3449 / 3452
页数:4
相关论文
共 50 条
  • [1] Adapting source grid parameters to improve the condition of the magnetostatic linear inverse problem of estimating nanoparticle distributions
    Roland Eichardt
    Daniel Baumgarten
    Bojana Petković
    Frank Wiekhorst
    Lutz Trahms
    Jens Haueisen
    Medical & Biological Engineering & Computing, 2012, 50 : 1081 - 1089
  • [2] Adapting source grid parameters to improve the condition of the magnetostatic linear inverse problem of estimating nanoparticle distributions
    Eichardt, Roland
    Baumgarten, Daniel
    Petkovic, Bojana
    Wiekhorst, Frank
    Trahms, Lutz
    Haueisen, Jens
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2012, 50 (10) : 1081 - 1089
  • [3] Resolution of linear magnetostatic inverse problem using iterative regularization
    Bégot, S
    Voisin, E
    Hiebel, P
    Kauffmann, JM
    Artioukhine, E
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2000, 12 (02): : 123 - 131
  • [4] D-optimal experimental design applied to a linear magnetostatic inverse problem
    Bégot, S
    Voisin, E
    Hiebel, P
    Artioukhine, E
    Kauffmann, JM
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 1065 - 1068
  • [5] On the solution of the inverse problem of magnetostatic tomography
    A. N. Pechenkov
    V. E. Shcherbinin
    Russian Journal of Nondestructive Testing, 2009, 45 : 176 - 190
  • [6] On the solution of the inverse problem of magnetostatic tomography
    Pechenkov, A. N.
    Shcherbinin, V. E.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2009, 45 (03) : 176 - 190
  • [7] Inverse problem of magnetostatic flaw detection
    Pechenkov, A. N.
    Shcherbinin, V. E.
    DOKLADY PHYSICS, 2006, 51 (06) : 311 - 314
  • [8] Inverse problem of magnetostatic flaw detection
    A. N. Pechenkov
    V. E. Shcherbinin
    Doklady Physics, 2006, 51 : 311 - 314
  • [9] Numerical comparison of sensor arrays for magnetostatic linear inverse problems based on a projection method
    Di Rienzo, Luca
    Haueisen, Jens
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 26 (02) : 356 - 367
  • [10] Different regularization methods for an inverse magnetostatic problem
    Formisano, Alessandro
    Martone, Raffaele
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 60 : S49 - S62