RawPower: Deep Learning based Anomaly Detection from Raw Network Traffic Measurements

被引:22
|
作者
Marin, Gonzalo [1 ,2 ]
Casas, Pedro [1 ]
Capdehourat, German [2 ]
机构
[1] AIT Austrian Inst Technol, Seibersdorf, Austria
[2] UDELAR, IIE FING, Montevideo, Uruguay
关键词
Deep Learning; Anomaly Detection; Network Traffic Measurements and Analysis;
D O I
10.1145/3234200.3234238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning models using deep architectures (i.e., deep learning) have gained path in recent years and have become state-of-the-art in many fields, including computer vision, speech recognition and natural language processing. However, when it comes to network measurement and analysis, classic machine learning approaches are commonly used, heavily relying on domain expert knowledge. In this work, we explore the power of deep learning models to perform anomaly detection on network traffic data, taking as input raw measurements coming directly from the stream of monitored bytes. Our initial results suggest that deep learning can enhance anomaly detection without requiring expert domain knowledge to handcraft input features.
引用
收藏
页码:75 / 77
页数:3
相关论文
共 50 条
  • [41] Anomaly Detection of Hostile Traffic Based on Network Traffic Distributions
    Kang, Koohong
    INFORMATION NETWORKING: TOWARDS UBIQUITOUS NETWORKING AND SERVICES, 2008, 5200 : 781 - 790
  • [42] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE ACCESS, 2021, 9 : 7550 - 7563
  • [43] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE Access, 2021, 9 : 7550 - 7563
  • [44] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [45] Anomaly Traffic Detection with Federated Learning toward Network-based Malware Detection in IoT
    Nishio, Takayuki
    Nakahara, Masataka
    Okui, Norihiro
    Kubota, Ayumu
    Kobayashi, Yasuaki
    Sugiyama, Keizo
    Shinkuma, Ryoichi
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 299 - 304
  • [46] DELM: Deep Ensemble Learning Model for Anomaly Detection in Malicious Network Traffic-based Adaptive Feature Aggregation and Network Optimization
    Ahmed, Mukhtar
    Chen, Jinfu
    Akpaku, Ernest
    Sosu, Rexford nii ayitey
    Latif, Ajmal
    ACM TRANSACTIONS ON PRIVACY AND SECURITY, 2024, 27 (04)
  • [47] Deep Learning-Based Anomaly Traffic Detection Method in Cloud Computing Environment
    Cen, Junjie
    Li, Yongbo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [48] Deep Learning-based DDoS Detection in Network Traffic Data
    Hadi, Teeb Hussein
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (05) : 407 - 414
  • [49] NETWORK ABNORMAL TRAFFIC DETECTION FRAMEWORK BASED ON DEEP REINFORCEMENT LEARNING
    Dong, Shi
    Xia, Yuanjun
    Wang, Tao
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 185 - 193
  • [50] Anomaly detection in network traffic
    Duraj, Agnieszka
    Bucki, Pawel
    Drajling, Aleksander
    Makrocki, Robert
    Sipinski, Mateusz
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (12): : 205 - 208