On a Saffman-Taylor problem in an infinite wedge

被引:0
|
作者
Markina, Irina
Meneses, Rodrigo
Vasil'ev, Alexander
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
关键词
Hele-Shaw problem; Saffman-Taylor finger; conformal map;
D O I
10.1080/00036810601148224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a zero-surface-tension two-dimensional Hele-Shaw flow in an infinite wedge. There exists a self-similar interface evolution in this wedge, an analogue of the famous Saffman-Taylor finger in a channel, exact shape of which has been given by Kadanoff. One of the main features of this evolution is its infinite time of existence and stability for the Hadamard ill-posed problem. We derive several exact solutions existing infinitely by generalizing and perturbing the one given by Kadanoff.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 50 条
  • [21] Topological considerations on finger dynamics in the Saffman-Taylor problem
    Casademunt, J.
    Jasnow, D.
    NATO ASI Series, Series B: Physics, 1993, 304
  • [22] CRYSTALLINE SAFFMAN-TAYLOR FINGERS
    ALMGREN, R
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (06) : 1511 - 1535
  • [23] SIDEBRANCHING OF THE SAFFMAN-TAYLOR FINGER
    LI, G
    KESSLER, D
    SANDER, L
    PHYSICAL REVIEW A, 1986, 34 (04): : 3535 - 3538
  • [24] The control of Saffman-Taylor instability
    Pasa, G
    ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 291 - 295
  • [25] Two-finger selection theory in the Saffman-Taylor problem
    Magdaleno, FX
    Casademunt, J
    PHYSICAL REVIEW E, 1999, 60 (05): : R5013 - R5016
  • [26] Tip-splitting evolution in the idealized Saffman-Taylor problem
    Bettelheim, E
    Agam, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (07): : 1759 - 1765
  • [27] STATIONARY SOLUTIONS FOR THE SAFFMAN-TAYLOR PROBLEM WITH SURFACE-TENSION
    VASCONCELOS, GL
    KADANOFF, LP
    PHYSICAL REVIEW A, 1991, 44 (10): : 6490 - 6495
  • [28] The Saffman-Taylor problem for an extremely shear-thinning fluid
    Richardson, G.
    King, J. R.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2007, 60 (161-200): : 161 - 200
  • [29] The Saffman-Taylor problem and several sets of remarkable integral identities
    Fokas, A. S.
    Kalimeris, K.
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (03)
  • [30] FINGER NARROWING UNDER LOCAL PERTURBATIONS IN THE SAFFMAN-TAYLOR PROBLEM
    ZOCCHI, G
    SHAW, BE
    LIBCHABER, A
    KADANOFF, LP
    PHYSICAL REVIEW A, 1987, 36 (04): : 1894 - 1900