Self-Supervised Correspondence in Visuomotor Policy Learning

被引:44
|
作者
Florence, Peter [1 ]
Manuelli, Lucas [1 ]
Tedrake, Russ [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Deep learning in robotics and automation; perception for grasping and manipulation; visual learning; MANIPULATION;
D O I
10.1109/LRA.2019.2956365
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we explore using self-supervised correspondence for improving the generalization performance and sample efficiency of visuomotor policy learning. Prior work has primarily used approaches such as autoencoding, pose-based losses, and end-to-end policy optimization in order to train the visual portion of visuomotor policies. We instead propose an approach using self-supervised dense visual correspondence training and show that this enables visuomotor policy learning with surprisingly high generalization performance with modest amounts of data. Using imitation learning, we demonstrate extensive hardware validation on challenging manipulation tasks with as few as 50 demonstrations. Our learned policies can generalize across classes of objects, react to deformable object configurations, and manipulate textureless symmetrical objects in a variety of backgrounds, all with closed-loop, real-time vision-based policies. Simulated imitation learning experiments suggest that correspondence training offers sample complexity and generalization benefits compared to autoencoding and end-to-end training.
引用
下载
收藏
页码:492 / 499
页数:8
相关论文
共 50 条
  • [31] MarioNette: Self-Supervised Sprite Learning
    Smirnov, Dmitriy
    Gharbi, Michael
    Fisher, Matthew
    Guizilini, Vitor
    Efros, Alexei A.
    Solomon, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [32] Self-Supervised Adversarial Variational Learning
    Ye, Fei
    Bors, Adrian. G.
    PATTERN RECOGNITION, 2024, 148
  • [33] Self-supervised Learning for Spinal MRIs
    Jamaludin, Amir
    Kadir, Timor
    Zisserman, Andrew
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 : 294 - 302
  • [34] Self-Supervised Learning of Robot Manipulation
    Tommy, Robin
    Krishnan, Athira R.
    2020 4TH INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTS (ICACR 2020), 2020, : 22 - 25
  • [35] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [36] Relational Self-Supervised Learning on Graphs
    Lee, Namkyeong
    Hyun, Dongmin
    Lee, Junseok
    Park, Chanyoung
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1054 - 1063
  • [37] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [38] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [39] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [40] COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS
    Zhang, Yongqi
    Zhang, Hui
    Yao, Quanming
    Wan, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 605 - 609