The Entanglement-Assisted Communication Capacity Over Quantum Trajectories

被引:9
|
作者
Chandra, Daryus [1 ,2 ]
Caleffi, Marcello [1 ,3 ]
Cacciapuoti, Angela Sara [1 ,3 ]
机构
[1] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
[2] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[3] Natl Interuniv Consortium Telecommun CNIT, Lab Nazl Comunicaz Multimediali, I-80126 Naples, Italy
关键词
Quantum entanglement; Trajectory; Quantum channels; Quantum mechanics; Quantum communication; Wireless communication; Encoding; Quantum communications; quantum trajectory; quantum superposition; quantum decoherence; CLASSICAL CAPACITY; INFORMATION;
D O I
10.1109/TWC.2021.3122962
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The unique and often-weird properties of quantum mechanics allow an information carrier to propagate through multiple trajectories of quantum channels simultaneously. This ultimately leads us to quantum trajectories with an indefinite causal order of quantum channels. It has been shown that indefinite causal order enables the violation of bottleneck capacity, which bounds the amount of the transferable classical and quantum information through a classical trajectory with a well-defined causal order of quantum channels. In this treatise, we investigate this beneficial property in the realm of both entanglement-assisted classical and quantum communications. To this aim, we derive closed-form capacity expressions of entanglement-assisted classical and quantum communication for arbitrary quantum Pauli channels over classical and quantum trajectories. We show that by exploiting the indefinite causal order of quantum channels, we obtain capacity gains over classical trajectory as well as the violation of bottleneck capacity for various practical scenarios. Furthermore, we determine the operating region where entanglement-assisted communication over quantum trajectory obtains capacity gain against classical trajectory and where the entanglement-assisted communication over quantum trajectory violates the bottleneck capacity.
引用
收藏
页码:3632 / 3647
页数:16
相关论文
共 50 条
  • [41] Strong Converse Exponent for Entanglement-Assisted Communication
    Li, Ke
    Yao, Yongsheng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5017 - 5029
  • [42] Optimized entanglement-assisted quantum error correction
    Taghavi, Soraya
    Brun, Todd A.
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW A, 2010, 82 (04):
  • [43] New entanglement-assisted quantum MDS codes
    Pang, Binbin
    Zhu, Shixin
    Wang, Liqi
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (03)
  • [44] New constructions of entanglement-assisted quantum codes
    Allahmadi, A.
    AlKenani, A.
    Hijazi, R.
    Muthana, N.
    Özbudak, F.
    Solé, P.
    [J]. Cryptography and Communications, 2022, 14 (01) : 15 - 37
  • [45] New constructions of entanglement-assisted quantum codes
    A. Allahmadi
    A. AlKenani
    R. Hijazi
    N. Muthana
    F. Özbudak
    P. Solé
    [J]. Cryptography and Communications, 2022, 14 : 15 - 37
  • [46] Duality in Entanglement-Assisted Quantum Error Correction
    Lai, Ching-Yi
    Brun, Todd A.
    Wilde, Mark M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) : 4020 - 4024
  • [47] Optimal entanglement-assisted discrimination of quantum measurements
    Mikova, M.
    Sedlak, M.
    Straka, I.
    Micuda, M.
    Ziman, M.
    Jezek, M.
    Dusek, M.
    Fiurasek, J.
    [J]. PHYSICAL REVIEW A, 2014, 90 (02):
  • [48] New Entanglement-Assisted Quantum MDS Codes with Maximal Entanglement
    Mustafa Sarı
    Mehmet E. Köroğlu
    [J]. International Journal of Theoretical Physics, 2021, 60 : 243 - 253
  • [49] Dualities and identities for entanglement-assisted quantum codes
    Lai, Ching-Yi
    Brun, Todd A.
    Wilde, Mark M.
    [J]. QUANTUM INFORMATION PROCESSING, 2014, 13 (04) : 957 - 990
  • [50] Entanglement-Assisted Quantum Negacyclic BCH Codes
    Chen, Xiaojing
    Zhu, Shixin
    Kai, Xiaoshan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (05) : 1509 - 1523