Shape calculus and finite element method in smooth domains

被引:0
|
作者
Tiihonen, T [1 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FIN-40351 Jyvaskyla, Finland
关键词
finite elements; curved boundary; error estimates; shape derivatives; continuous dependence on geometry;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of finite elements in smooth domains leads naturally to polyhedral or piecewise polynomial approximations of the boundary. Hence the approximation error consists of two parts: the geometric part and the finite element part. We propose to exploit this decomposition in the error analysis by introducing an auxiliary problem defined in a polygonal domain approximating the original smooth domain. The finite element part of the error can be treated in the standard way. To estimate the geometric part of the error, we need quantitative estimates related to perturbation of the geometry. WE derive such estimates using the techniques developed for shape sensitivity analysis.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation
    Oñate, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (3-4) : 355 - 370
  • [42] An implicit stabilized finite element method for the compressible Navier–Stokes equations using finite calculus
    Mohammad Kouhi
    Eugenio Oñate
    Computational Mechanics, 2015, 56 : 113 - 129
  • [43] A nonlinear finite element method applied to shape memory bars
    La Cava, CAPL
    Savi, MA
    Pacheco, PMCL
    SMART MATERIALS AND STRUCTURES, 2004, 13 (05) : 1118 - 1130
  • [44] On principles for the selection of shape functions for the Generalized Finite Element Method
    Babuska, I
    Banerjee, U
    Osborn, JE
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (49-50) : 5595 - 5629
  • [45] Shape sensing with inverse finite element method for slender structures
    Savino, Pierclaudio
    Gherlone, Marco
    Tondolo, Francesco
    STRUCTURAL ENGINEERING AND MECHANICS, 2019, 72 (02) : 217 - 227
  • [46] Shape optimization approach based on the extended finite element method
    Topa, Vasile
    Purcar, Marius
    Munteanu, Calin
    Grindei, Laura
    Pacurar, Claudia
    Garvasiuc, Ovidiu
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2012, 31 (02) : 477 - 497
  • [47] GENERATION OF SERENDIPEAN SHAPE FUNCTIONS IN FINITE-ELEMENT METHOD
    GRYCZMANSKI, M
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1974, 22 (11): : 915 - 921
  • [48] AN ENHANCEMENT OF FINITE ELEMENT METHOD WITH MOVING KRIGING SHAPE FUNCTIONS
    Plengkhom, K.
    Kanok-Nukulchai, W.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2005, 2 (04) : 451 - 475
  • [49] SHAPE OPTIMIZATION OF REACTIVE MUFFLERS BY THE FINITE-ELEMENT METHOD
    BERNHARD, RJ
    KIPP, CR
    NOISE CONTROL ENGINEERING JOURNAL, 1984, 23 (03) : 107 - 107
  • [50] SHAPE OPTIMIZATION USING A GENETIC ALGORITHM AND FINITE ELEMENT METHOD
    Hermann, M.
    Hrus, T.
    Kacalek, P.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 190 - 193