TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA

被引:1
|
作者
Lu, Xukun [1 ]
Liu, Gang [1 ]
Ning, Silan [2 ]
Su, Zhonghua [2 ]
He, Ze [2 ]
机构
[1] China Acad Elect & Informat Technol, 11 Shuangyuan Rd, Beijing 10041, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Resources & Environm, 2006 Xiyuan Ave, Chengdu 611731, Peoples R China
关键词
hyperspectral image; airborne LiDAR; feature extraction; tree species classification; INDIVIDUAL TREES; BIOMASS;
D O I
10.1109/IGARSS39084.2020.9324266
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Forest resources are of great significance in regulating climate, maintaining biodiversity, and providing ecological products. Accurate identification of tree species is the basis for research and utilization of forest resources. This study combined the characteristics of multi-source data, based on the AISA EAGLE II hyperspectral images and airborne LiDAR point clouds which were obtained in August, 2016. Point cloud characteristics, spectral and texture characteristics were extracted from both datasets. Then SVM was used to classify the main tree species of Genhe experimental area. The results showed that tree species classification accuracy can be improved by using airborne LiDAR and hyperspectral image features.
引用
收藏
页码:2787 / 2790
页数:4
相关论文
共 50 条
  • [21] Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks
    Mayra, Janne
    Keski-Saari, Sarita
    Kivinen, Sonja
    Tanhuanpaa, Topi
    Hurskainen, Pekka
    Kullberg, Peter
    Poikolainen, Laura
    Viinikka, Arto
    Tuominen, Sakari
    Kumpula, Timo
    Vihervaara, Petteri
    REMOTE SENSING OF ENVIRONMENT, 2021, 256
  • [22] TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL DATA IN SUBTROPICAL MOUNTAINOUS FOREST
    Jia, Wen
    Pang, Yong
    Meng, Shili
    Ju, Hongbo
    Li, Zengyuan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2284 - 2287
  • [23] Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data
    Maschler, Julia
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2018, 10 (08)
  • [24] Mapping Individual Tree Species in an Urban Forest Using Airborne Lidar Data and Hyperspectral Imagery
    Zhang, Caiyun
    Qiu, Fang
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2012, 78 (10): : 1079 - 1087
  • [25] Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
    Liu, Luxia
    Coops, Nicholas C.
    Aven, Neal W.
    Pang, Yong
    REMOTE SENSING OF ENVIRONMENT, 2017, 200 : 170 - 182
  • [26] Semi-automated tree species classification based on roughness parameters using airborne lidar data
    Novo, Ana
    Gonzalez-Jorge, Higinio
    Comesana-Cebral, Lino-Jose
    Lorenzo, Henrique
    Martinez-Sanchez, Joaquin
    DYNA, 2022, 97 (05): : 528 - 534
  • [27] Subtropical Forest Tree Species Classification Based on 3D-CNN for Airborne Hyperspectral Data
    Zhao L.
    Zhang X.
    Wu Y.
    Zhang B.
    Linye Kexue/Scientia Silvae Sinicae, 2020, 56 (11): : 97 - 107
  • [28] A HYBRID APPROACH FOR TREE CLASSIFICATION IN AIRBORNE LIDAR DATA
    Li, Xiaoling
    Zeng, Wenjun
    Duan, Ye
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2183 - 2187
  • [29] Tree Species Classification in a Complex Brazilian Tropical Forest Using Hyperspectral and LiDAR Data
    Martins-Neto, Rorai Pereira
    Tommaselli, Antonio Maria Garcia
    Imai, Nilton Nobuhiro
    Honkavaara, Eija
    Miltiadou, Milto
    Saito Moriya, Erika Akemi
    David, Hassan Camil
    FORESTS, 2023, 14 (05):
  • [30] Tree species classification using plant functional traits from LiDAR and hyperspectral data
    Shi, Yifang
    Skidmore, Andrew K.
    Wang, Tiejun
    Holzwarth, Stefanie
    Heiden, Uta
    Pinnel, Nicole
    Zhu, Xi
    Heurich, Marco
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 207 - 219