Evaluation of Terrain Parameter Estimation using a Stochastic Terrain Model

被引:1
|
作者
Dumond, Danielle A. [1 ]
Ray, Laura E. [1 ]
Trautmann, Eric [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
来源
关键词
Mobile robot dynamics; terrain factors;
D O I
10.1117/12.817737
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous vehicles driving on off-road terrain exhibit substantial variation in mobility characteristics even when the terrain is horizontal and qualitatively homogeneous. This paper presents a simple stochastic model for characterizing observed variability in vehicle response to terrain and for representing transitions between homogeneous terrain with local variability or between heterogeneous terrain types. Such a model provides a means for more realistic evaluation of terrain parameter estimation methods through simulation. A stochastic terrain model in which friction angle and soil cohesion are represented by Gaussian random variables qualitatively represents observed variability in traction vs. slip characteristics measured experimentally. The stochastic terrain model is used to evaluate a terrain parameter estimation method in which terrain forces are first estimated independent of a terrain model, and subsequently, parameters of a terrain model, such as soil cohesion, friction angle, and stress distribution parameters are determined from estimated vehicle-terrain forces. Simulation results show drawbar pull vs. slip characteristics resulting from terrain parameter estimation are within statistical bounds established by the stochastic terrain model.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Novel Model for Terrain Slope Estimation Using ICESat/GLAS Waveform Data
    Nie, Sheng
    Wang, Cheng
    Dong, Pinliang
    Li, Guicai
    Xi, Xiaohuan
    Wang, Pu
    Yang, Xuebo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 217 - 227
  • [22] Digital terrain model height estimation using support vector machine regression
    Okwuashi, Onuwa
    Ndehedehe, Christopher
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2015, 111 (9-10)
  • [23] EVALUATION OF A PUFF DISPERSION MODEL IN COMPLEX TERRAIN
    THUILLIER, RH
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1992, 42 (03): : 290 - 297
  • [24] Terrain Estimation for Off-Road Vehicles Using Gaussian Mixture Model
    Kumar, Alok
    Kelkar, Atul
    2023 NINTH INDIAN CONTROL CONFERENCE, ICC, 2023, : 126 - 131
  • [25] Underwater Terrain Positioning Method Using Maximum a Posteriori Estimation and PCNN Model
    Chen, Pengyun
    Zhang, Pengfei
    Ma, Teng
    Shen, Peng
    Li, Ye
    Wang, Rupeng
    Han, Yue
    Li, Lizhou
    JOURNAL OF NAVIGATION, 2019, 72 (05): : 1233 - 1253
  • [26] A Robust Deep Learning Model for Terrain Slope Estimation
    Alorf, Abdulaziz
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1231 - 1245
  • [27] GENERATING A MODEL OF THE TERRAIN IN THE ASPECT OF FLOOD RISK ESTIMATION
    Kwinta, Andrzej
    ACTA SCIENTIARUM POLONORUM-FORMATIO CIRCUMIECTUS, 2014, 13 (04) : 155 - 165
  • [28] Terrain-Scatter Augmented Vertical Plane Model for Radio Path Loss Estimation in Complex Terrain
    Breton, Daniel J.
    Haedrich, Caitlin E.
    2021 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2021), 2021,
  • [29] Hierarchical stochastic model of terrain subsidence during tunnel excavation
    Janda, Tomas
    Sejnoha, Jiri
    Sejnoha, Michal
    BUILDING UP EFFICIENT AND SUSTAINABLE TRANSPORT INFRASTRUCTURE 2017 (BESTINFRA2017), 2017, 236
  • [30] Terrain-Based Genetic Algorithm (TBGA): Modeling parameter space as terrain
    Gordon, VS
    Pirie, R
    Wachter, A
    Sharp, S
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 229 - 235