A Modified Tseng's Method for Solving the Modified Variational Inclusion Problems and Its Applications

被引:10
|
作者
Seangwattana, Thidaporn [1 ,5 ]
Sombut, Kamonrat [2 ,5 ]
Arunchai, Areerat [3 ]
Sitthithakerngkiet, Kanokwan [4 ,5 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Energy & Environm, Rayong Campus KMUTNB, Rayong 21120, Thailand
[2] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Pathum Thani 12110, Thailand
[3] Nakhon Sawan Rajabhat Univ, Fac Sci & Technol, Dept Math & Stat, Nakhon Sawan 60000, Thailand
[4] King Mongkuts Univ Technol North Bangkok KMUTNB, Fac Sci Appl, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10587, Thailand
[5] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Appl Math Sci & Engn Res Unit AMSERU, 39 Rungsit Nakorn Nayok Rd,Klong 6, Pathum Thani 12110, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
variational inclusion problem; parallel technique; modified Tseng's method; weak convergence theorem; image restoration; MONOTONE-OPERATORS; SPLITTING METHOD; INEQUALITIES; CONVERGENCE; ALGORITHMS; THEOREM; SUM;
D O I
10.3390/sym13122250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The goal of this study was to show how a modified variational inclusion problem can be solved based on Tseng's method. In this study, we propose a modified Tseng's method and increase the reliability of the proposed method. This method is to modify the relaxed inertial Tseng's method by using certain conditions and the parallel technique. We also prove a weak convergence theorem under appropriate assumptions and some symmetry properties and then provide numerical experiments to demonstrate the convergence behavior of the proposed method. Moreover, the proposed method is used for image restoration technology, which takes a corrupt/noisy image and estimates the clean, original image. Finally, we show the signal-to-noise ratio (SNR) to guarantee image quality.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces
    Abass, H. A.
    Ugwunnadi, G. C.
    Narain, O. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 2287 - 2310
  • [22] A modified contraction method for solving certain class of split monotone variational inclusion problems with application
    Izuchukwu, C.
    Ezeora, J. N.
    Martinez-Moreno, J.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [23] TSENG TYPE ITERATIVE ALGORITHM FOR GENERALIZED VARIATIONAL INEQUALITY AND VARIATIONAL INCLUSION PROBLEMS WITH APPLICATIONS
    Gugnani, Meenakshi
    Gupta, Nishu
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [24] A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems
    Duong Viet Thong
    Nguyen The Vinh
    Yeol Je Cho
    Optimization Letters, 2020, 14 : 1157 - 1175
  • [25] A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems
    Thong, Duong Viet
    Vinh, Nguyen The
    Cho, Yeol Je
    OPTIMIZATION LETTERS, 2020, 14 (05) : 1157 - 1175
  • [26] Modified Tseng's extragradient methods with self-adaptive step size for solving bilevel split variational inequality problems
    Huy, Pham Van
    Van, Le Huynh My
    Hien, Nguyen Duc
    Anh, Tran Viet
    OPTIMIZATION, 2022, 71 (06) : 1721 - 1748
  • [27] Two step inertial Tseng method for solving monotone variational inclusion problem
    Mokaba, Lehlogonolo
    Abass, Hammed Anuoluwapo
    Adamu, Abubakar
    RESULTS IN APPLIED MATHEMATICS, 2025, 25
  • [28] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    O. K. Oyewole
    H. A. Abass
    A. A. Mebawondu
    K. O. Aremu
    Numerical Algorithms, 2022, 89 : 769 - 789
  • [29] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    Oyewole, O. K.
    Abass, H. A.
    Mebawondu, A. A.
    Aremu, K. O.
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 769 - 789
  • [30] The Regularization Method for Solving Variational Inclusion Problems
    Pholasa, Nattawut
    Cholamjiak, Prasit
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (02): : 369 - 381