Biphasic growth dynamics control cell division in Caulobacter crescentus

被引:29
|
作者
Banerjee, Shiladitya [1 ,2 ,3 ]
Lo, Klevin [1 ,4 ]
Daddysman, Matthew K. [4 ]
Selewa, Alan [4 ,5 ]
Kuntz, Thomas [6 ]
Dinner, Aaron R. [1 ,4 ,6 ]
Scherer, Norbert F. [1 ,4 ,6 ]
机构
[1] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] UCL, Dept Phys & Astron, London WC1E 6BT, England
[3] UCL, Inst Phys Living Syst, London WC1E 6BT, England
[4] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
[5] Univ Chicago, Biophys Sci Grad Program, Chicago, IL 60637 USA
[6] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA
来源
NATURE MICROBIOLOGY | 2017年 / 2卷 / 09期
基金
美国国家科学基金会;
关键词
SHAPE DYNAMICS; SIZE HOMEOSTASIS; BACTERIAL;
D O I
10.1038/nmicrobiol.2017.116
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Cell size is specific to each species and impacts cell function. Various phenomenological models for cell size regulation have been proposed, but recent work in bacteria has suggested an 'adder' model, in which a cell increments its size by a constant amount between each division. However, the coupling between cell size, shape and constriction remains poorly understood. Here, we investigate size control and the cell cycle dependence of bacterial growth using multigenerational cell growth and shape data for single Caulobacter crescentus cells. Our analysis reveals a biphasic mode of growth: a relative timer phase before constriction where cell growth is correlated to its initial size, followed by a pure adder phase during constriction. Cell wall labelling measurements reinforce this biphasic model, in which a crossover from uniform lateral growth to localized septal growth is observed. We present a mathematical model that quantitatively explains this biphasic 'mixer' model for cell size control.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Dynamics of Two Phosphorelays Controlling Cell Cycle Progression in Caulobacter crescentus
    Chen, Y. Erin
    Tsokos, Christos G.
    Biondi, Emanuele G.
    Perchuk, Barrett S.
    Laub, Michael T.
    JOURNAL OF BACTERIOLOGY, 2009, 191 (24) : 7417 - 7429
  • [22] Control of chromosome replication in Caulobacter crescentus
    Marczynski, GT
    Shapiro, L
    ANNUAL REVIEW OF MICROBIOLOGY, 2002, 56 : 625 - 656
  • [23] Cell cycle control of a holdfast attachment gene in Caulobacter crescentus
    Janakiraman, RS
    Brun, YV
    JOURNAL OF BACTERIOLOGY, 1999, 181 (04) : 1118 - 1125
  • [24] A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus
    Beaufay, Francois
    Coppine, Jerome
    Mayard, Aurelie
    Laloux, Geraldine
    De Bolle, Xavier
    Hallez, Regis
    EMBO JOURNAL, 2015, 34 (13): : 1786 - 1800
  • [25] DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus
    Moell, Andrea
    Schlimpert, Susan
    Briegel, Ariane
    Jensen, Grant J.
    Thanbichler, Martin
    MOLECULAR MICROBIOLOGY, 2010, 77 (01) : 90 - 107
  • [26] Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus
    Muir, RE
    Gober, JW
    MOLECULAR MICROBIOLOGY, 2001, 41 (01) : 117 - 130
  • [27] Characterization and crystallization of DivK, an essential response regulator for cell division and differentiation in Caulobacter crescentus
    Cabantous, S
    Guillet, V
    Ohta, N
    Newton, A
    Samama, JP
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 : 1249 - 1251
  • [28] A quantitative study of the division cycle of Caulobacter crescentus stalked cells
    Li, Shenghua
    Brazhnik, Paul
    Sobral, Bruno
    Tyson, John J.
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (01) : 0111 - 0129
  • [30] Cell cycle control and environmental response by second messengers in Caulobacter crescentus
    Chunrui Xu
    Bronson R. Weston
    John J. Tyson
    Yang Cao
    BMC Bioinformatics, 21