Numerical solution of sine-Gordon equation by variational iteration method

被引:67
|
作者
Batiha, B. [1 ]
Noorani, M. S. M. [1 ]
Hashim, I. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Natl Univ Malaysia, Sch Math Sci, Bangi 43600, Malaysia
关键词
variational iteration method; Sine-Gordon equation;
D O I
10.1016/j.physleta.2007.05.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, variational iteration method (VIM) is applied to obtain approximate analytical solution of the sine-Gordon equation without any discretization. Comparisons with the exact solutions reveal that VIM is very effective and convenient. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:437 / 440
页数:4
相关论文
共 50 条
  • [21] METHOD FOR SOLVING SINE-GORDON EQUATION
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. PHYSICAL REVIEW LETTERS, 1973, 30 (25) : 1262 - 1264
  • [22] THE SINE-GORDON EQUATION AND THE TRACE METHOD
    ZHENG, WM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09): : L485 - L489
  • [23] On some modified variational iteration methods for solving the one-dimensional sine-Gordon equation
    Shao, Xinping
    Han, Danfu
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (05) : 969 - 981
  • [24] Modified Laplace Variational Iteration Method for Analytical Approach of Klein-Gordon and Sine-Gordon Equations
    Nadeem, Muhammad
    Li, Fengquan
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1933 - 1940
  • [25] Weak solutions to a nonlinear variational sine-Gordon equation
    Hu, Yanbo
    Wang, Guodong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 1 - 11
  • [26] On the numerical solution of the Sine-Gordon equation in 2+1 dimensions
    Bratsos, A. G.
    [J]. In the Frontiers of Computational Science, 2005, 3 : 309 - 320
  • [27] Numerical solution to the sine-Gordon equation defined on the whole real axis
    Zheng, Chunxiong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06): : 2494 - 2506
  • [28] Numerical solution of the Klein–Gordon equation via He’s variational iteration method
    Fatemeh Shakeri
    Mehdi Dehghan
    [J]. Nonlinear Dynamics, 2008, 51 : 89 - 97
  • [29] On the numerical solution of the Sine-Gordon equation in 2+1 dimensions
    Bratsos, A. G.
    [J]. Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 916 - 919
  • [30] NUMERICAL STUDY OF PERTURBED SINE-GORDON EQUATION
    SEISL, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (04): : T121 - T125