In vivo performance of genetically encoded indicators of neural activity in flies

被引:148
|
作者
Reiff, DF [1 ]
Ihring, A
Guerrero, G
Isacoff, EY
Joesch, M
Nakai, J
Borst, A
机构
[1] Max Planck Inst Neurobiol, Dept Syst & Computat Neurosci, D-82152 Martinsried, Germany
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] RIKEN Brain Sci Inst, Lab Memory & Learning, Saitama 351198, Japan
来源
JOURNAL OF NEUROSCIENCE | 2005年 / 25卷 / 19期
关键词
genetic indicators; GFP; neural activity; transgenic animals; optical imaging; calcium;
D O I
10.1523/JNEUROSCI.4900-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Genetically encoded fluorescent probes of neural activity represent new promising tools for systems neuroscience. Here, we present a comparative in vivo analysis of 10 different genetically encoded calcium indicators, as well as the pH- sensitive synapto- pHluorin. We analyzed their fluorescence changes in presynaptic boutons of the Drosophila larval neuromuscular junction. Robust neural activity did not result in any or noteworthy fluorescence changes when Flash- Pericam, Camgaroo- 1, and Camgaroo- 2 were expressed. However, calculated on the raw data, fractional fluorescence changes up to 18% were reported by synapto- pHluorin, Yellow Cameleon 2.0, 2.3, and 3.3, Inverse- Pericam, GCaMP1.3, GCaMP1.6, and the troponin C- based calcium sensor TN- L15. The response characteristics of all of these indicators differed considerably from each other, with GCaMP1.6 reporting high rates of neural activity with the largest and fastest fluorescence changes. However, GCaMP1.6 suffered from photobleaching, whereas the fluorescence signals of the double- chromophore indicators were in general smaller but more photostable and reproducible, with TN- L15 showing the fastest rise of the signals at lower activity rates. We show for GCaMP1.3 and YC3.3 that an expanded range of neural activity evoked fairly linear fluorescence changes and a corresponding linear increase in the signal- to- noise ratio ( SNR). The expression level of the indicator biased the signal kinetics and SNR, whereas the signal amplitude was independent. The presented data will be useful for in vivo experiments with respect to the selection of an appropriate indicator, as well as for the correct interpretation of the optical signals.
引用
收藏
页码:4766 / 4778
页数:13
相关论文
共 50 条
  • [41] Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo
    Rossano, Adam J.
    Chouhan, Amit K.
    Macleod, Gregory T.
    JOURNAL OF PHYSIOLOGY-LONDON, 2013, 591 (07): : 1691 - 1706
  • [42] Green genetically encoded voltage indicators for rapid and prolonged two photon voltage recording in vivo
    Land, M. A.
    Zaabout, E. N.
    Lu, X.
    Yang, S.
    Liu, Z.
    Dong, X.
    McDonald, A. J.
    Gou, Y.
    Villette, V.
    Lai, S.
    Pang, M. M.
    Su, S.
    Cai, C.
    Froudarakis, E.
    Zhou, N.
    Patel, S. S.
    Smith, C. L.
    Bizouard, P.
    Bradley, J.
    Clandinin, T. R.
    Giovannucci, A.
    Tolias, A. S.
    Reimer, J.
    Dieudonne, S.
    St-Pierre, F.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 27 - 27
  • [43] Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging
    Qian, Yong
    Cosio, Danielle M. Orozco
    Piatkevich, Kiryl D.
    Aufmkolk, Sarah
    Su, Wan-Chi
    Celiker, Orhan T.
    Schohl, Anne
    Murdock, Mitchell H.
    Aggarwal, Abhi
    Chang, Yu-Fen
    Wiseman, Paul W.
    Ruthazer, Edward S.
    Boyden, Edward S.
    Campbell, Robert E.
    PLOS BIOLOGY, 2020, 18 (11)
  • [44] Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation
    Gee, J. Michael
    Gibbons, Meredith B.
    Taheri, Marsa
    Palumbos, Sierra
    Morris, S. Craig
    Smeal, Roy M.
    Flynn, Katherine F.
    Economo, Michael N.
    Cizek, Christian G.
    Capecchi, Mario R.
    Tvrdik, Petr
    Wilcox, Karen S.
    White, John A.
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2015, 8
  • [45] Genetically Encoded Voltage Indicators Mapping Cardiac Electrical Activity Under a New Light
    Delmar, Mario
    Morley, Gregory E.
    CIRCULATION RESEARCH, 2015, 117 (05) : 390 - 391
  • [46] Near-infrared and far-red genetically encoded indicators of neuronal activity
    Shcherbakova, Daria M.
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 362
  • [47] In Vivo Investigation of Calpain Activity by Lifetime Imaging of Genetically Encoded FRET Sensors
    Sardini, Alessandro
    Stuckey, Daniel W.
    McGinty, James
    Laine, Romain
    Soloviev, Vadim Y.
    Arridge, Simon R.
    Wells, Dominic J.
    French, Paul M. W.
    Hajnal, Joseph V.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 159A - 159A
  • [48] A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo
    Josh D. Hawk
    Elias M. Wisdom
    Titas Sengupta
    Zane D. Kashlan
    Daniel A. Colón-Ramos
    Nature Communications, 12
  • [49] A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging
    Liang Wang
    Chunling Wu
    Wanling Peng
    Ziliang Zhou
    Jianzhi Zeng
    Xuelin Li
    Yini Yang
    Shuguang Yu
    Ye Zou
    Mian Huang
    Chang Liu
    Yefei Chen
    Yi Li
    Panpan Ti
    Wenfeng Liu
    Yufeng Gao
    Wei Zheng
    Haining Zhong
    Shangbang Gao
    Zhonghua Lu
    Pei-Gen Ren
    Ho Leung Ng
    Jie He
    Shoudeng Chen
    Min Xu
    Yulong Li
    Jun Chu
    Nature Communications, 13
  • [50] A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo
    Hawk, Josh D.
    Wisdom, Elias M.
    Sengupta, Titas
    Kashlan, Zane D.
    Colon-Ramos, Daniel A.
    NATURE COMMUNICATIONS, 2021, 12 (01)