Treatment of multiple input uncertainties using the scaled boundary finite element method

被引:7
|
作者
Dsouza, Shaima M. [1 ]
Varghese, Tittu M. [1 ]
Ooi, Ean Tat [2 ,3 ]
Natarajan, Sundararajan [1 ]
Bordas, Stephane P. A. [3 ,4 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
[2] Federat Univ Australia, Sch Engn Informat Technol & Phys Sci, Ballarat, Vic 3350, Australia
[3] Univ Luxembourg, Fac Sci Technol & Commun, Inst Computat Engn, Luxembourg, Luxembourg
[4] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
关键词
Implicitly defined interfaces; Level-set method; Non-intrusive stochastic finite element; method; Scaled boundary finite element method; NUMERICAL-INTEGRATION; CELL METHOD;
D O I
10.1016/j.apm.2021.06.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a non-intrusive scaled boundary finite element method to consider multiple input uncertainties, viz., material and geometry. The types of geometric uncertainties considered include the shape and size of inclusions. The inclusions are implicitly defined, and a robust framework is presented to treat the interfaces, which does not require explicit generation of a conforming mesh or special enrichment techniques. A polynomial chaos expansion is used to represent the input and the output uncertainties. The efficiency and the accuracy of the proposed framework are elucidated in detail with a few problems by comparing the results with the conventional Monte Carlo method. A sensitivity analysis based on Sobol' indices using the developed framework is presented to identify the critical input parameter that has a higher influence on the output response. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:538 / 554
页数:17
相关论文
共 50 条
  • [41] Discrete modeling of fiber reinforced composites using the scaled boundary finite element method
    Zhang, J.
    Eisentrager, J.
    Duczek, S.
    Song, C.
    COMPOSITE STRUCTURES, 2020, 235
  • [42] Efficient prediction of deterministic size effects using the scaled boundary finite element method
    Ooi, E. T.
    Yang, Z. J.
    ENGINEERING FRACTURE MECHANICS, 2010, 77 (06) : 985 - 1000
  • [43] Dynamic cohesive crack propagation modelling using the scaled boundary finite element method
    Ooi, E. T.
    Yang, Z. J.
    Guo, Z. Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2012, 35 (08) : 786 - 800
  • [44] Numerical simulation of ultrasonic guided waves using the Scaled Boundary Finite Element Method
    Gravenkamp, Hauke
    Song, Chongmin
    Prager, Jens
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 2686 - 2689
  • [45] The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method
    Gravenkamp, Hauke
    Prager, Jens
    Saputra, Albert A.
    Song, Chongmin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (03): : 1358 - 1367
  • [46] Adaptive analysis using scaled boundary finite element method in 3D
    Zhang, Junqi
    Natarajan, Sundararajan
    Ooi, Ean Tat
    Song, Chongmin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [47] Potential flow around obstacles using the scaled boundary finite-element method
    Deeks, AJ
    Cheng, L
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 41 (07) : 721 - 741
  • [48] Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method
    Ooi, Ean Tat
    Yang, Zhen Jun
    ENGINEERING FRACTURE MECHANICS, 2011, 78 (02) : 252 - 273
  • [49] The computation of dispersion relations for axisymmetric waveguides using the Scaled Boundary Finite Element Method
    Gravenkamp, Hauke
    Birk, Carolin
    Song, Chongmin
    ULTRASONICS, 2014, 54 (05) : 1373 - 1385
  • [50] Magnetostatic simulations with consideration of exterior domains using the scaled boundary finite element method
    Birk, Carolin
    Reichel, Maximilian
    Schroeder, Joerg
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399