Clinical electrophysiology of the optic nerve and retinal ganglion cells

被引:26
|
作者
Marmoy, Oliver R. [1 ,2 ,3 ]
Viswanathan, Suresh [4 ]
机构
[1] Great Ormond St Hosp Sick Children, Clin & Acad Dept Ophthalmol, London, England
[2] UCL, UCL GOS Inst Child Hlth, London, England
[3] Manchester Metropolitan Univ, Manchester, Lancs, England
[4] SUNY Coll Optometry, New York, NY 10036 USA
关键词
VISUAL-EVOKED-POTENTIALS; PHOTOPIC NEGATIVE RESPONSE; SCOTOPIC THRESHOLD RESPONSE; MULTIFOCAL PATTERN ELECTRORETINOGRAPHY; STANDARD AUTOMATED PERIMETRY; MACULAR EDEMA SECONDARY; TEST-RETEST RELIABILITY; MULTIPLE-SCLEROSIS; LONG-TERM; OSCILLATORY POTENTIALS;
D O I
10.1038/s41433-021-01614-x
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Clinical electrophysiological assessment of optic nerve and retinal ganglion cell function can be performed using the Pattern Electroretinogram (PERG), Visual Evoked Potential (VEP) and the Photopic Negative Response (PhNR) amongst other more specialised techniques. In this review, we describe these electrophysiological techniques and their application in diseases affecting the optic nerve and retinal ganglion cells with the exception of glaucoma. The disease groups discussed include hereditary, compressive, toxic/nutritional, traumatic, vascular, inflammatory and intracranial causes for optic nerve or retinal ganglion cell dysfunction. The benefits of objective, electrophysiological measurement of the retinal ganglion cells and optic nerve are discussed, as are their applications in clinical diagnosis of disease, determining prognosis, monitoring progression and response to novel therapies.
引用
收藏
页码:2386 / 2405
页数:20
相关论文
共 50 条
  • [21] Subtype-specific response of retinal ganglion cells to optic nerve crush
    S. Daniel
    AF Clark
    CM McDowell
    Cell Death Discovery, 4
  • [22] Subtype-specific response of retinal ganglion cells to optic nerve crush
    Daniel, S.
    Clark, A. F.
    McDowell, C. M.
    CELL DEATH DISCOVERY, 2018, 4
  • [23] Use of Visual Electrophysiology to Monitor Retinal and Optic Nerve Toxicity
    Chiang, Tsun-Kang
    White, Kayla Marie
    Kurup, Shree K.
    Yu, Minzhong
    BIOMOLECULES, 2022, 12 (10)
  • [24] Retinal Ganglion Cell Thickness to Assess the Optic Nerve
    Lam, Byron L.
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2015, 35 (02) : 107 - 108
  • [25] ELECTRICAL RESPONSES OF THE RETINAL NERVE AND OPTIC GANGLION OF THE SQUID
    MACNICHOL, EF
    LOVE, WE
    SCIENCE, 1960, 132 (3429) : 737 - 738
  • [26] Changes in parvalbumin immunoreactive retinal ganglion cells and amacrine cells after optic nerve injury
    Hong, Chris Joon Ho
    Siddiqui, Ahad M.
    Sabljic, Thomas F.
    Ball, Alexander K.
    EXPERIMENTAL EYE RESEARCH, 2016, 145 : 363 - 372
  • [27] Interactions Between Dendritic Cells, Microglia, and Retinal Ganglion Cells Following Injury to the Optic Nerve
    Gregerson, Dale
    Heuss, Neal
    Pierson, Mark
    Montaniel, Kim Ramil
    McPherson, Scott
    Sam, Thien
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [28] GANGLION-CELLS OF THE TERMINAL NERVE - MORPHOLOGY AND ELECTROPHYSIOLOGY
    FUJITA, I
    SATOU, M
    UEDA, K
    BRAIN RESEARCH, 1985, 335 (01) : 148 - 152
  • [29] Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush
    Wang, Ruobing
    Sun, Qinglei
    Xia, Fangzhou
    Chen, Zeli
    Wu, Jiangchun
    Zhang, Yuelu
    Xu, Jiajun
    Liu, Lin
    EXPERIMENTAL EYE RESEARCH, 2017, 159 : 49 - 57
  • [30] VALPROATE PROMOTES SURVIVAL OF RETINAL GANGLION CELLS IN A RAT MODEL OF OPTIC NERVE CRUSH
    Zhang, Z. Z.
    Gong, Y. Y.
    Shi, Y. H.
    Zhang, W.
    Qin, X. H.
    Wu, X. W.
    NEUROSCIENCE, 2012, 224 : 282 - 293