Clinical electrophysiology of the optic nerve and retinal ganglion cells

被引:26
|
作者
Marmoy, Oliver R. [1 ,2 ,3 ]
Viswanathan, Suresh [4 ]
机构
[1] Great Ormond St Hosp Sick Children, Clin & Acad Dept Ophthalmol, London, England
[2] UCL, UCL GOS Inst Child Hlth, London, England
[3] Manchester Metropolitan Univ, Manchester, Lancs, England
[4] SUNY Coll Optometry, New York, NY 10036 USA
关键词
VISUAL-EVOKED-POTENTIALS; PHOTOPIC NEGATIVE RESPONSE; SCOTOPIC THRESHOLD RESPONSE; MULTIFOCAL PATTERN ELECTRORETINOGRAPHY; STANDARD AUTOMATED PERIMETRY; MACULAR EDEMA SECONDARY; TEST-RETEST RELIABILITY; MULTIPLE-SCLEROSIS; LONG-TERM; OSCILLATORY POTENTIALS;
D O I
10.1038/s41433-021-01614-x
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Clinical electrophysiological assessment of optic nerve and retinal ganglion cell function can be performed using the Pattern Electroretinogram (PERG), Visual Evoked Potential (VEP) and the Photopic Negative Response (PhNR) amongst other more specialised techniques. In this review, we describe these electrophysiological techniques and their application in diseases affecting the optic nerve and retinal ganglion cells with the exception of glaucoma. The disease groups discussed include hereditary, compressive, toxic/nutritional, traumatic, vascular, inflammatory and intracranial causes for optic nerve or retinal ganglion cell dysfunction. The benefits of objective, electrophysiological measurement of the retinal ganglion cells and optic nerve are discussed, as are their applications in clinical diagnosis of disease, determining prognosis, monitoring progression and response to novel therapies.
引用
收藏
页码:2386 / 2405
页数:20
相关论文
共 50 条
  • [1] Clinical electrophysiology of the optic nerve and retinal ganglion cells
    Oliver R. Marmoy
    Suresh Viswanathan
    Eye, 2021, 35 : 2386 - 2405
  • [2] Correction: Clinical electrophysiology of the optic nerve and retinal ganglion cells
    Oliver R. Marmoy
    Suresh Viswanathan
    Eye, 2023, 37 : 1290 - 1290
  • [3] Clinical electrophysiology of the optic nerve and retinal ganglion cells (vol 35, pg 2386, 2021)
    Marmoy, Oliver R.
    Viswanathan, Suresh
    EYE, 2023, 37 (06) : 1290 - 1290
  • [4] Mitochondrial disorders of the retinal ganglion cells and the optic nerve
    Finsterer, Josef
    Mancuso, Michelangelo
    Pareyson, Davide
    Burgunder, Jean-Marc
    Klopstock, Thomas
    MITOCHONDRION, 2018, 42 : 1 - 10
  • [5] Adaptation of retinal ganglion cells after optic nerve crush
    Hanke, J
    Tietgens, H
    Gans, K
    Sabel, BA
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 : 7 - 7
  • [6] Optic nerve and retinal electrostimulation in rats: direct activation of the retinal ganglion cells
    Barriga-Rivera, Alejandro
    Suaning, Gregg J.
    Delgado-Garcia, Jose M.
    Gruart, Agnes
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1226 - 1229
  • [7] Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve
    Levkovitch-Verbin, Hani
    Dardik, Rima
    Vander, Shelly
    Melamed, Shlomo
    EXPERIMENTAL EYE RESEARCH, 2010, 91 (02) : 127 - 134
  • [8] Marcks overexpression in retinal ganglion cells promotes optic nerve regeneration
    Peng, Xue-Qi
    Li, Yan-Zhong
    Gu, Chen
    He, Xuan-Cheng
    Li, Chang-Ping
    Sun, Yong-Quan
    Du, Hong-Zhen
    Teng, Zhao-Qian
    Liu, Chang-Mei
    CELL DEATH & DISEASE, 2024, 15 (12):
  • [9] Rabbit retinal ganglion cells survival after optic nerve section
    Germain, F
    Calvo, M
    Blanco, R
    Vaquero, CF
    Villa, P
    VISION RESEARCH, 1996, 36 : 410 - 410
  • [10] Photoreceptive retinal ganglion cells control the information rate of the optic nerve
    Milosavljevic, Nina
    Storchi, Riccardo
    Eleftheriou, Cyril G.
    Colins, Andrea
    Petersen, Rasmus S.
    Lucas, Robert J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (50) : E11817 - E11826