Fast methods for training Gaussian processes on large datasets

被引:32
|
作者
Moore, C. J. [1 ]
Chua, A. J. K. [1 ]
Berry, C. P. L. [2 ]
Gair, J. R. [3 ,4 ]
机构
[1] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[2] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[3] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[4] Biomathemat & Stat Scotland, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
ROYAL SOCIETY OPEN SCIENCE | 2016年 / 3卷 / 05期
关键词
Gaussian processes; regression; data analysis; inference; PROCESS REGRESSION; EFFICIENT; HYPERPARAMETERS; SELECTION;
D O I
10.1098/rsos.160125
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealing with large datasets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and especially for performing Bayesian model comparison between different covariance functions. We apply our techniques to both synthetic and real data and quantify the speed-up relative to using nested sampling to numerically evaluate model evidences.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Clustering Large Datasets with Kernel Methods
    Fausser, Stefan
    Schwenker, Friedhelm
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 501 - 504
  • [22] Fast Bayesian inference for large occupancy datasets
    Diana, Alex
    Dennis, Emily Beth
    Matechou, Eleni
    Morgan, Byron John Treharne
    BIOMETRICS, 2023, 79 (03) : 2503 - 2515
  • [23] Fast approximating triangulation of large scattered datasets
    Weimer, H
    Warren, J
    ADVANCES IN ENGINEERING SOFTWARE, 1999, 30 (06) : 389 - 400
  • [24] Fast Bayesian hyperparameter optimization on large datasets
    Klein, Aaron
    Falkner, Stefan
    Bartels, Simon
    Hennig, Philipp
    Hutter, Frank
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4945 - 4968
  • [25] Comparison of fast regression algorithms in large datasets
    Cangur, Sengul
    Ankarali, Handan
    KUWAIT JOURNAL OF SCIENCE, 2023, 50 (02)
  • [26] Quantum algorithms for training Gaussian processes
    Zhao, Zhikuan
    Fitzsimons, Jack K.
    Osborne, Michael A.
    Roberts, Stephen J.
    Fitzsimons, Joseph F.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [27] Fast Robust Model Selection in Large Datasets
    Dupuis, Debbie J.
    Victoria-Feser, Maria-Pia
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 203 - 212
  • [28] Maximum Vector-Angular Margin Core Vector Machine suitable for fast training for large datasets
    Hu, Wen-Jun
    Wang, Shi-Tong
    Deng, Zhao-Hong
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2011, 39 (05): : 1178 - 1184
  • [29] LARGE EXCURSIONS OF GAUSSIAN-PROCESSES
    KAC, M
    SLEPIAN, D
    ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04): : 1215 - 1228
  • [30] Large extremes of Gaussian chaos processes
    V. I. Piterbarg
    Doklady Mathematics, 2016, 93 : 145 - 147