Reappearance of first Shapiro step in narrow topological Josephson junctions

被引:22
|
作者
Rosenbach, Daniel [1 ,2 ,3 ,4 ,7 ]
Schmitt, Tobias W. [1 ,5 ]
Schueffelgen, Peter [1 ,2 ]
Stehno, Martin P. [6 ]
Li, Chuan
Schleenvoigt, Michael [1 ]
Jalil, Abdur R. [1 ]
Mussler, Gregor [1 ,2 ]
Neumann, Elmar [8 ]
Trellenkamp, Stefan [2 ]
Golubov, Alexander A. [7 ,9 ]
Brinkman, Alexander [7 ]
Gruetzmacher, Detlev [1 ,2 ]
Schaepers, Thomas [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Helmholtz Virtual Inst Topol Insulators VITI, D-52425 Julich, Germany
[3] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, Julich Aachen Res Alliance, Aachen, Germany
[4] Rhein Westfal TH Aachen, Aachen, Germany
[5] Rhein Westfal TH Aachen, JARA FIT Inst Green IT, D-52062 Aachen, Germany
[6] Univ Wurzburg, Phys Inst EP3, D-97070 Wurzburg, Germany
[7] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[8] Forschungszentrum Julich, Helmholtz Nano Facil HNF, D-52425 Julich, Germany
[9] Moscow Inst Phys & Technol, Dolgoprudnyi 14170, Moscow Region, Russia
关键词
SURFACE-STATES;
D O I
10.1126/sciadv.abf1854
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In Josephson junctions, a supercurrent across a nonsuperconducting weak link is carried by electron-hole bound states. Because of the helical spin texture of nondegenerate topological surface states, gapless bound states are established in junctions with topological weak link. These have a characteristic 4 pi-periodic current phase relation (C Phi R) that leads to twice the conventional Shapiro step separation voltage in radio frequency-dependent measurements. In this context, we identify an attenuated first Shapiro step in (Bi0.06Sb0.94)(2)Te-3 (BST) Josephson junctions with AlOx capping layer. We further investigate junctions on narrow, selectively deposited BST nanoribbons, where surface charges are confined to the perimeter of the nanoribbon. Within these junctions, previously identified signatures of gapless bound states are absent. Because of confinement, transverse momentum sub-bands are quantized and a topological gap opening is observed. Surface states within these quantized sub-bands are spin degenerate, which evokes bound states of conventional 2 pi-periodic C Phi R within the BST nanoribbon weak link.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Josephson radiation patterns in underdamped topological Josephson junctions
    Zhang, Yuejian
    Yang, Xiping
    Feng, Jia-Jin
    Wang, Zhi
    Ma, Tianxing
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [22] Planar Josephson Hall effect in topological Josephson junctions
    Maistrenko, Oleksii
    Scharf, Benedikt
    Manske, Dirk
    Hankiewicz, Ewelina M.
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [23] Chiral topological superconductivity in Josephson junctions
    Jian, Shao-Kai
    Yin, Shuai
    PHYSICAL REVIEW B, 2021, 103 (13)
  • [24] Josephson effect in multiterminal topological junctions
    Zazunov, A.
    Egger, R.
    Alvarado, M.
    Levy Yeyati, A.
    PHYSICAL REVIEW B, 2017, 96 (02)
  • [25] Josephson junctions of topological nodal superconductors
    Seshadri, Ranjani
    Khodas, Maxim
    Meidan, Dganit
    SCIPOST PHYSICS, 2022, 12 (06):
  • [26] Anisotropic topological superconductivity in Josephson junctions
    Pekerten, Baris
    Pakizer, Joseph D.
    Hawn, Benjamin
    Matos-Abiague, Alex
    PHYSICAL REVIEW B, 2022, 105 (05)
  • [27] Theory of topological spin Josephson junctions
    Shen, Pei-Xin
    Hoffman, Silas
    Trif, Mircea
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [28] Parity Measurement in Topological Josephson Junctions
    Crepin, Franois
    Trauzettel, Bjoern
    PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [29] Spontaneous Josephson π junctions with topological superconductors
    Haim, Arbel
    PHYSICAL REVIEW B, 2019, 100 (06)
  • [30] Andreev reflection and bound states in topological insulator based planar and step Josephson junctions
    Choudhari, Tarun
    Deo, Nivedita
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 85 : 238 - 247