BioVLAB-Cancer-Pharmacogenomics: tumor heterogeneity and pharmacogenomics analysis of multi-omics data from tumor on the cloud

被引:1
|
作者
Park, Sungjoon [1 ]
Lee, Dohoon [2 ]
Kim, Youngkuk [1 ]
Lim, Sangsoo [3 ]
Chae, Heejoon [4 ]
Kim, Sun [2 ,3 ,5 ]
机构
[1] Seoul Natl Univ, Dept Comp Sci & Engn, Seoul 08840, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul 08840, South Korea
[3] Seoul Natl Univ, Bioinformat Inst, Seoul 08840, South Korea
[4] Sookmyung Womens Univ, Div Comp Sci, Seoul 04310, South Korea
[5] Seoul Natl Univ, Inst Engn Res, Seoul 08840, South Korea
基金
新加坡国家研究基金会;
关键词
MICRORNA; MMIA;
D O I
10.1093/bioinformatics/btab478
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Multi-omics data in molecular biology has accumulated rapidly over the years. Such data contains valuable information for research in medicine and drug discovery. Unfortunately, data-driven research in medicine and drug discovery is challenging for a majority of small research labs due to the large volume of data and the complexity of analysis pipeline. Results: We present BioVLAB-Cancer-Pharmacogenomics, a bioinformatics system that facilitates analysis of multi-omics data from breast cancer to analyze and investigate intratumor heterogeneity and pharmacogenomics on Amazon Web Services. Our system takes multi-omics data as input to perform tumor heterogeneity analysis in terms of TCGA data and deconvolve-and-match the tumor gene expression to cell line data in CCLE using DNA methylation profiles. We believe that our system can help small research labs perform analysis of tumor multi-omics without worrying about computational infrastructure and maintenance of databases and tools.
引用
收藏
页码:275 / 277
页数:3
相关论文
共 50 条
  • [21] Towards multi-omics characterization of tumor heterogeneity: a comprehensive review of statistical and machine learning approaches
    Lee, Dohoon
    Park, Youngjune
    Kim, Sun
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [22] Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
    Menyhart, Otilia
    Gyorffy, Balazs
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 949 - 960
  • [23] SMMART Program: A multi-omics tumor board with a focus on breast cancer.
    Kong, Ben L.
    Johnson, Brett E.
    Keck, Jamie M.
    Mitri, Souraya
    Leyshock, Patrick
    Stommel, Jayne M.
    Siex, Kiara
    Klinger, Marlana
    Zheng, Christina L.
    Williams-Belizaire, Rochelle
    McWeeney, Shannon
    Goecks, Jeremy
    Kolodzie, Annette
    Guimaraes, Alexander R.
    Thomas, George V.
    Corless, Christopher L.
    Mitri, Zahi I.
    Gray, Joe W.
    Mills, Gordon B.
    Bergan, Raymond C.
    CANCER RESEARCH, 2021, 81 (13)
  • [24] Multi-omics integration analysis unveils heterogeneity in breast cancer at the individual level
    Zhao, Zhangxiang
    Jin, Tongzhu
    Chen, Bo
    Dong, Qi
    Liu, Mingyue
    Guo, Jiayu
    Song, Xiaoying
    Li, Yawei
    Chen, Tingting
    Han, Huiming
    Liang, Haihai
    Gu, Yunyan
    CELL CYCLE, 2023, 22 (20) : 2229 - 2244
  • [25] The impact of tobacco exposure on tumor microenvironment and prognosis in lung adenocarcinoma by integrative analysis of multi-omics data
    Lu, Xiaomin
    Ma, Liang
    Yin, Xuewen
    Ji, Haoming
    Qian, Ye
    Zhong, Sixun
    Yan, Aiting
    Zhang, Yan
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 101
  • [26] Glutamine Metabolism Regulators Associated with Cancer Development and the Tumor Microenvironment: A Pan-Cancer Multi-Omics Analysis
    Zou, Jingwen
    Du, Kunpeng
    Li, Shaohua
    Lu, Lianghe
    Mei, Jie
    Lin, Wenping
    Deng, Min
    Wei, Wei
    Guo, Rongping
    GENES, 2021, 12 (09)
  • [27] Deep characterization of tumor microenvironments using single cell multi-omics analysis
    Montesclaros, Luz
    Boutet, Stephane C.
    Taylor, Sarah E. B.
    Stubbington, Michael J. T.
    Giangarra, Valeria
    Lau, Julia K.
    Sapida, Jerald
    Ziraldo, Solongo
    Pfeiffer, Katherine A.
    Zheng, Grace
    Barrio, Alvaro Martinez
    Marrs, Samuel
    Wu, Kevin
    Mikkelsen, Tarjei S.
    JOURNAL OF IMMUNOLOGY, 2019, 202 (01):
  • [28] Multi-omics analysis revealed the role of extracellular vesicles in hepatobiliary & pancreatic tumor
    Gongye, Xiangdong
    Tian, Ming
    Xia, Peng
    Qu, Chengmin
    Chen, Zhang
    Wang, Jigang
    Zhu, Qian
    Li, Zhijie
    Yuan, Yufeng
    JOURNAL OF CONTROLLED RELEASE, 2022, 350 : 11 - 25
  • [29] Multi-Omics Marker Analysis Enables Early Prediction of Breast Tumor Progression
    Xu, Haifeng
    Lien, Tonje
    Bergholtz, Helga
    Fleischer, Thomas
    Djerroudi, Lounes
    Vincent-Salomon, Anne
    Sorlie, Therese
    Aittokallio, Tero
    FRONTIERS IN GENETICS, 2021, 12
  • [30] ATHENA: analysis of tumor heterogeneity from spatial omics measurements
    Martinelli, Adriano Luca
    Rapsomaniki, Maria Anna
    BIOINFORMATICS, 2022, 38 (11) : 3151 - 3153