Representations of rapidly decaying functions by the Maslov canonical operator

被引:32
|
作者
Dobrokhotov, S. Yu. [1 ]
Tirozzi, B. [2 ]
Shafarevich, A. I. [1 ]
机构
[1] Russian Acad Sci, Inst Problems Math, Moscow 117901, Russia
[2] Univ Roma La Sapienza, Rome, Italy
基金
俄罗斯基础研究基金会;
关键词
rapidly decaying function; caustic; Maslov canonical operator; Lagrangian manifold; focal point; partial Fourier transform; asymptotic solution;
D O I
10.1134/S0001434607110144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:713 / 717
页数:5
相关论文
共 50 条
  • [21] Description of tsunami propagation based on the Maslov canonical operator
    Dobrokhotov, S. Yu.
    Sekerzh-Zenkovich, S. Ya.
    Tirozzi, B.
    Tudorovskii, T. Ya.
    [J]. DOKLADY MATHEMATICS, 2006, 74 (01) : 592 - 596
  • [22] Rapidly decaying Wigner functions are Schwartz functions
    Hernandez, Felipe
    Riedel, C. Jess
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
  • [23] Maslov’s canonical operator in arbitrary coordinates on the Lagrangian manifold
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    A. I. Shafarevich
    [J]. Doklady Mathematics, 2016, 93 : 99 - 102
  • [24] Efficient Formulas for the Maslov Canonical Operator near a Simple Caustic
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    [J]. Russian Journal of Mathematical Physics, 2018, 25 : 545 - 552
  • [25] Efficient Formulas for the Maslov Canonical Operator near a Simple Caustic
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (04) : 545 - 552
  • [26] Maslov's canonical operator in arbitrary coordinates on the Lagrangian manifold
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    Shafarevich, A. I.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (01) : 99 - 102
  • [27] Quasiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes
    Belov, VV
    Dobrokhotov, SY
    Sinitsyn, SO
    Tudorovskii, TY
    [J]. DOKLADY MATHEMATICS, 2003, 68 (03) : 460 - 465
  • [28] DIFFERENTIAL-EQUATIONS ON COMPLEX-ANALYTIC MANIFOLDS, AND THE MASLOV CANONICAL OPERATOR
    STERNIN, BY
    SHATALOV, VE
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (03) : 117 - 148
  • [29] Operator representations of definitizable functions
    Jonas, P
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2000, 25 (01) : 41 - 72
  • [30] A Gagliardo–Nirenberg Type Inequality for Rapidly Decaying Functions
    Marek Fila
    Johannes Lankeit
    [J]. Journal of Dynamics and Differential Equations, 2022, 34 : 2901 - 2912