On the solution to the inverse problem for the Toda chain

被引:7
|
作者
Villarroel, J [1 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
关键词
integrable equations; inverse problems;
D O I
10.1137/S0036139996300903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The "elliptic" version of a three-dimensional nonlinear integrable equation, the Toda chain equation, is studied by means of the inverse scattering method. Several classes of decaying solutions corresponding to both the continuous and discrete spectrum of the associated spectral problem are obtained. Conditions that guarantee reality and analyticity along with relevant estimates are also given. Finally a class of solutions with rotational symmetry is constructed.
引用
收藏
页码:261 / 285
页数:25
相关论文
共 50 条
  • [41] Approximate solution of the inverse Richards' problem
    Vocciante, Marco
    Reverberi, Andrea P.
    Dovi, Vincenzo G.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (9-10) : 5364 - 5376
  • [42] Abel solution to a bremmstrahlung inverse problem
    Thomas, Cliff A.
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [43] Solution to the inverse problem in ocean acoustics
    Ramana Murty, T.V.
    Somayajulu, Y.K.
    Mahadevan, R.
    Murty, C.S.
    Sastry, J.S.
    Defence Science Journal, 1992, 42 (02) : 89 - 101
  • [44] Stable solution of inverse problem in ellipsometry
    Dmitruk, N.L.
    Zabashta, L.A.
    Zabashta, O.I.
    Storizshko, V.E.
    Poverkhnost Fizika Khimiya Mekhanika, (12): : 73 - 79
  • [45] A verifiable solution to the MEG inverse problem
    Barnes, GR
    Furlong, PL
    Singh, KD
    Hillebrand, A
    NEUROIMAGE, 2006, 31 (02) : 623 - 626
  • [46] The hierarchy solution to the LHC inverse problem
    Gainer, James S.
    Matchev, Konstantin T.
    Park, Myeonghun
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [47] The solution of an inverse retrospective problem of convection
    Alekseev, AK
    HIGH TEMPERATURE, 1999, 37 (04) : 552 - 558
  • [48] UNIQUENESS OF A SOLUTION OF AN INVERSE SCATTERING PROBLEM
    STEPANOV, VN
    DIFFERENTIAL EQUATIONS, 1982, 18 (04) : 482 - 487
  • [49] SOLUTION OF INVERSE PROBLEM OF BOREHOLES ELECTROMETRY
    KOLOSOV, OL
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1975, (06): : 498 - 500
  • [50] Uniqueness of the solution to an inverse thermoelasticity problem
    Kozlov, V. A.
    Maz'ya, V. G.
    Fomin, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (03) : 525 - 531