In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding

被引:100
|
作者
Guo, Yajun [1 ]
Li, Chonggui [1 ,2 ]
Zeng, Ming [1 ]
Wang, Jinqian [1 ]
Deng, Peiran [1 ]
Wang, You [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China
[2] Southern Methodist Univ, Res Ctr Adv Mfg, Lyle Sch Engn, Dallas, TX 75205 USA
[3] Harbin Inst Technol, Dept Mat Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser cladding; High-entropy alloys; Composite coatings; Wear resistance; MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; RESISTANCE; EVOLUTION; ELEMENTS;
D O I
10.1016/j.matchemphys.2019.122522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-situ synthesis of TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy (HEA) coatings were fabricated on the surface of 304 stainless steels by laser cladding. The influence of Ti and C addition on the phase composition and microstructure of the CoCrCuFeNiSi0.2 HEA composite coatings reinforced by (Ti, C)(x) (x = 0, 0.5, 1.0, 1.5) were investigated by X-ray diffractometer, optical microscope and scanning electron microscope, respectively. The hardness and the room-temperature wear resistance of the HEA coatings were measured by Vickers hardness tester and dry sliding friction and wear tester. The experimental results show that the coatings without Ti and C consist of a single FCC solid solution structure. By the addition of Ti and C, the coatings consist of FCC solid solution and TiC. The microstructure of the HEA coatings are composed of typical dendrites. With the addition of Ti and C, the in-situ TiC ceramics are mainly distributed at the grain boundaries. Moreover, by further increase of the (Ti, C)(x) content, the volume fraction of the TiC ceramic in the composite coating is also gradually increased. The microhardness and wear resistance of the coatings with Ti and C additions are significantly improved, compared to those of the coatings without any such addition. Particularly, for the (Ti, C)(1.0) coating, its average microhardness and wear volume is 498.5 HV0.2 and 0.42 mm(3), respectively. In addition, the addition of Ti and C gradually reduce the coefficient of friction of the CoCrCuFeNiSi0.2 (Ti, C)(x) HEA coatings.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Wear and corrosion of CoCrFeNiMnTix high entropy alloy coatings by laser cladding
    Wang, D. C.
    Wu, C. . L.
    Zhang, S.
    Zhang, C. H.
    Zhang, D. X.
    Sun, X. Y.
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (17) : 2811 - 2823
  • [32] Erosion wear resistance of laser cladding AlCr2FeCoNiNbx high-entropy alloy coatings
    Ji, X. L.
    Bao, Y. Y.
    Zhao, J. H.
    Gu, P.
    PROCEEDINGS OF ASIA INTERNATIONAL CONFERENCE ON TRIBOLOGY 2018 (ASIATRIB 2018), 2018, : 3 - 5
  • [33] Synthesis and Characterization of AlCoCrFeNiNbx High-Entropy Alloy Coatings by Laser Cladding
    Jiang, Hui
    Han, Kaiming
    Li, Dayan
    Cao, Zhiqiang
    CRYSTALS, 2019, 9 (01) : 1 - 11
  • [34] Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings
    Xia, Xingchuan
    Zhang, Enkuan
    Ding, Jian
    Wang, Yujiang
    Liu, Yongchang
    ACTA METALLURGICA SINICA, 2025, 61 (01)
  • [35] Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding
    Li, Yanzhou
    Shi, Yan
    OPTICS AND LASER TECHNOLOGY, 2021, 134 (134):
  • [36] Influence of Al Addition on the Microstructure and Wear Behavior of Laser Cladding FeCoCrNiAlx High-Entropy Alloy Coatings
    Liu, Yang
    Xu, Zhixiang
    Xu, Gaojie
    Chen, Hongyong
    COATINGS, 2023, 13 (02)
  • [37] Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding
    Zhao X.
    Cui H.
    Jiang D.
    Song X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6311 - 6323
  • [38] Microstructure and high-temperature wear behavior of CoCrFeNiWx high-entropy alloy coatings fabricated by laser cladding
    Liu, Hao
    Gao, Qiang
    Dai, Jianbo
    Chen, Peijian
    Gao, Wenpeng
    Hao, Jingbin
    Yang, Haifeng
    TRIBOLOGY INTERNATIONAL, 2022, 172
  • [39] Effect of TiC on the Microstructure and Properties of FeCoNiCrMo High-Entropy Alloy Coatings by Plasma Cladding
    Weiying Gong
    Zhidan Zhou
    Yongzhen Zhang
    Xin Zhang
    Sanming Du
    Journal of Thermal Spray Technology, 2025, 34 (1) : 381 - 393
  • [40] Effect of TiC on the Microstructure and Properties of FeCoNiCrMo High-Entropy Alloy Coatings by Plasma Cladding
    Gong, Weiying
    Zhou, Zhidan
    Zhang, Yongzhen
    Zhang, Xin
    Du, Sanming
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2025, 34 (01) : 381 - 393