Sentiment Analysis using Word2vec-CNN-BiLSTM Classification

被引:10
|
作者
Yue, Wang [1 ]
Li, Lei [2 ]
机构
[1] Hosei Univ, Grad Sch Sci Engn, Li Lab, 3-7-2 Kajinocho, Koganei, Tokyo 1848584, Japan
[2] Hosei Univ, Dept Sci & Engn, 3-7-2 Kajinocho, Koganei, Tokyo 1848584, Japan
关键词
sentiment analysis; CNN; BiLSTM; Word2vec; text classification;
D O I
10.1109/SNAMS52053.2020.9336549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional neural network based short text classification algorithms for sentiment classification is easy to find the errors. In order to solve this problem, the Word Vector Model (Word2vec), Bidirectional Long-term and Short-term Memory networks (BiLSTM) and convolutional neural network (CNN) are combined. The experiment shows that the accuracy of CNN-BiLSTM model associated with Word2vec word embedding achieved 91.48%. This proves that the hybrid network model performs better than the single structure neural network in short text.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 50 条
  • [31] A CNN-BiLSTM Model for Document-Level Sentiment Analysis
    Rhanoui, Maryem
    Mikram, Mounia
    Yousfi, Siham
    Barzali, Soukaina
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (03): : 832 - 847
  • [32] Weighted aspect based sentiment analysis using extended OWA operators and Word2Vec for tourism
    Sayani Ghosal
    Amita Jain
    Multimedia Tools and Applications, 2023, 82 : 18353 - 18380
  • [33] Sentiment Analysis using Token2Vec and LSTMs
    Shamal, Achira Jeewaka
    Pemathilake, Rankothge Gishan Hiranya
    Karunathilake, Sachith Paramie
    Ganegoda, Gamage Upeksha
    2018 18TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER) CONFERENCE PROCEEDINGS, 2018, : 48 - 53
  • [34] Weighted aspect based sentiment analysis using extended OWA operators and Word2Vec for tourism
    Ghosal, Sayani
    Jain, Amita
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 18353 - 18380
  • [35] Micro-blog sentiment classification using Doc2vec
    Liang, Yinghong
    Liu, Haitao
    Zhang, Su
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 407 - 410
  • [36] Sentiment Analysis of Product Reviews Using Transformer Enhanced 1D-CNN and BiLSTM
    Rana, Muhammad Rizwan Rashid
    Nawaz, Asif
    Ali, Tariq
    Alattas, Ahmed Saleh
    Abdelminaam, Diaa Salama
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2024, 24 (03) : 112 - 131
  • [37] Enhancing Text Sentiment Classification with Hybrid CNN-BiLSTM Model on WhatsApp Group
    Susandri, Susandri
    Defit, Sarjon
    Tajuddin, Muhammad
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (03) : 355 - 363
  • [38] CBMAFM: CNN-BiLSTM Multi-Attention Fusion Mechanism for sentiment classification
    Wankhade, Mayur
    Annavarapu, Chandra Sekhara Rao
    Abraham, Ajith
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 51755 - 51786
  • [39] A deep learning analysis on question classification task using Word2vec representations
    Yilmaz, Seyhmus
    Toklu, Sinan
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (07): : 2909 - 2928
  • [40] A deep learning analysis on question classification task using Word2vec representations
    Seyhmus Yilmaz
    Sinan Toklu
    Neural Computing and Applications, 2020, 32 : 2909 - 2928