Sentiment Analysis using Word2vec-CNN-BiLSTM Classification

被引:10
|
作者
Yue, Wang [1 ]
Li, Lei [2 ]
机构
[1] Hosei Univ, Grad Sch Sci Engn, Li Lab, 3-7-2 Kajinocho, Koganei, Tokyo 1848584, Japan
[2] Hosei Univ, Dept Sci & Engn, 3-7-2 Kajinocho, Koganei, Tokyo 1848584, Japan
关键词
sentiment analysis; CNN; BiLSTM; Word2vec; text classification;
D O I
10.1109/SNAMS52053.2020.9336549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional neural network based short text classification algorithms for sentiment classification is easy to find the errors. In order to solve this problem, the Word Vector Model (Word2vec), Bidirectional Long-term and Short-term Memory networks (BiLSTM) and convolutional neural network (CNN) are combined. The experiment shows that the accuracy of CNN-BiLSTM model associated with Word2vec word embedding achieved 91.48%. This proves that the hybrid network model performs better than the single structure neural network in short text.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 50 条
  • [1] Word2vec-CNN-Bilstm短文本情感分类
    王立荣
    福建电脑, 2020, 36 (01) : 11 - 16
  • [2] Chinese Sentiment Classification Using Extended Word2Vec
    张胜
    张鑫
    程佳军
    王晖
    Journal of Donghua University(English Edition), 2016, 33 (05) : 823 - 826
  • [3] Chinese Sentiment Classification Using A Neural Network Tool-Word2vec
    Su, Zengcai
    Xu, Hua
    Zhang, Dongwen
    Xu, Yunfeng
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [4] Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN
    Chen, Tao
    Xu, Ruifeng
    He, Yulan
    Wang, Xuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 72 : 221 - 230
  • [5] A Word2vec Model for Sentiment Analysis of Weibo
    Shi, Bowen
    Zhao, Jichang
    Xu, Ke
    2019 16TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT (ICSSSM2019), 2019,
  • [6] A Study on Sentiment Computing and Classification of Sina Weibo with Word2vec
    Bai Xue
    Chen Fu
    Zhan Shaobin
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 358 - 363
  • [7] Detection of Suspicious Accounts on Twitter Using Word2Vec and Sentiment Analysis
    Conde-Cespedes, Patricia
    Chavando, Julie
    Deberry, Eliza
    MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, 2019, 833 : 362 - 371
  • [8] Sentiment Analysis of Twitter Messages using Word2vec by Weighted Average
    Djaballah, Kamel Ahsene
    Boukhalfa, Kamel
    Boussaid, Omar
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 223 - 228
  • [9] Chinese comments sentiment classification based on word2vec and SVMperf
    Zhang, Dongwen
    Xu, Hua
    Su, Zengcai
    Xu, Yunfeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (04) : 1857 - 1863
  • [10] Text Classification Research Based on Improved Word2vec and CNN
    Gao, Mengyuan
    Li, Tinghui
    Huang, Peifang
    SERVICE-ORIENTED COMPUTING, ICSOC 2018, 2019, 11434 : 126 - 135