Lumps and rogue waves on the periodic backgrounds for a (2+1)-dimensional nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain

被引:2
|
作者
Du, Xia-Xia [1 ,2 ]
Tian, Bo [1 ,2 ]
Qu, Qi-Xing [3 ]
Zhang, Chen-Rong [1 ,2 ]
Chen, Su-Su [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Univ Int Business & Econ, Sch Informat, Beijing 100029, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 22期
基金
中国国家自然科学基金;
关键词
Heisenberg ferromagnetic spin chain; (2+1)-dimensional nonlinear Schrodinger equation; lump-periodic waves; rogue-periodic waves; Lie symmetry transformations; SOLITON SOLUTIONS; INTEGRABLE MODEL; INSTABILITY;
D O I
10.1142/S0217984921503218
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spin excitations for the magnetic materials are used in the nonlinear signal processing devices and microwave communication systems. Under consideration in this paper is a (2 + 1)-dimensional nonlinear Schrodinger (NLS) equation which describes the spin dynamics for a Heisenberg ferromagnetic spin chain. Through a reduced transformation, we convert such an equation into the (1 + 1)-dimensional focusing NLS equation. Via the rogue-periodic solutions associated with two types of the Lie symmetry transformations of the NLS equation, we present the lump- and rogue-periodic solutions. Besides, the lump and mixed lump-soliton solutions are deduced. We graphically investigate the lump- and rogue-periodic waves and find that the amplitudes of the lumps and rogue waves are negatively related to vertical bar A vertical bar and vertical bar gamma vertical bar; the distances between two valleys of the lumps and widths of the rogue waves are affected by J and J(1), where A is the uniaxial crystal field anisotropy parameter, J and J(1) are related to the bilinear exchange interaction, gamma is the lattice parameter.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Enormous soliton solutions to a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Zahran, Emad H. M.
    Bekir, Ahmet
    CHINESE JOURNAL OF PHYSICS, 2022, 77 : 1236 - 1252
  • [22] Symmetry Reductions, Group-Invariant Solutions, and Conservation Laws of a (2+1)-Dimensional Nonlinear Schrodinger Equation in a Heisenberg Ferromagnetic Spin Chain
    Du, Xia-Xia
    Tian, Bo
    Yuan, Yu-Qiang
    Du, Zhong
    ANNALEN DER PHYSIK, 2019, 531 (11)
  • [23] Bright soliton interactions in a (2+1)-dimensional fourth-order variable-coefficient nonlinear Schrodinger equation for the Heisenberg ferromagnetic spin chain
    Yang, Chunyu
    Zhou, Qin
    Triki, Houria
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Liu, Wen-Jun
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2019, 95 (02) : 983 - 994
  • [24] New Traveling Wave Solutions for the (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation
    Han, Tianyong
    Wen, Jiajin
    Li, Zhao
    Yuan, Jun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [25] New exact solitary solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Sahoo, S.
    Tripathy, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (03):
  • [26] New exact solitary solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    S. Sahoo
    A. Tripathy
    The European Physical Journal Plus, 137
  • [27] Lump wave phase transition for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Ma, Yu-Lan
    Optik, 2021, 231
  • [28] Lump wave phase transition for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation
    Ma, Yu-Lan
    OPTIK, 2021, 231
  • [29] Integrability, soliton solutions and modulation instability analysis of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation
    Guo, Ding
    Tian, Shou-Fu
    Zhang, Tian -Tian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (03) : 770 - 778
  • [30] Solitons, rogue waves and breather solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients
    Hamed, A. A.
    Kader, A. H. Abdel
    Latif, M. S. Abdel
    OPTIK, 2020, 216