Seismic vulnerability assessment of precast post-tensioned segmental bridge piers subject to far-fault ground motions

被引:14
|
作者
Ahmadi, Ehsan [1 ]
Kashani, Mohammad M. [2 ]
机构
[1] Birmingham City Univ, Sch Engn & Built Environm, Birmingham, W Midlands, England
[2] Univ Southampton, Fac Engn & Phys Sci, Southampton, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Precast post-tensioned segmental columns; Accelerated bridge construction; Incremental dynamic analysis; Far-fault ground motions; Seismic performance assessment; RIGID BLOCKS; ROCKING INSTABILITY; REINFORCING BARS; BASE EXCITATION; COLUMNS; PERFORMANCE; CORROSION; BODIES; IMPACT; FRAMES;
D O I
10.1016/j.istruc.2021.09.041
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Precast post-tensioned segmental (PPS) bridge piers mitigate global and local damages of bridge structures through natural hinges (joints between their segments) and rocking motion of their segments. The application of the PPS piers is currently growing in Accelerated Bridge Construction (ABC) where the segments are manufactured offsite with higher quality, and are assembled onsite in a short time. Structural vulnerability analysis of the PPS piers is very essential in extending their engineering implementation under seismic loading. Thus, this work particularly focuses on seismic vulnerability assessment of the PPS piers. To achieve this goal, a previously developed and experimentally validated robust Finite Element model of the PPS piers in OpenSees programme is used to analyse PPS piers of various aspect ratios. An equivalent reinforced concrete (RC) pier to one of the PPS piers is also analysed. Incremental Dynamic Analysis (IDA) is performed and fragility curves are generated to evaluate seismic performance of the PPS piers and an equivalent RC pier using a suite of 44 far-fault ground motions. The IDA results show that slenderising the PPS pier tends to change the failure criterion from the yielding of the post-tensioning tendon to the strength loss of the pier. For squat and slender piers, the yielding of the tendon governs the failure of the pier while the strength of very slender PPS piers drops due to second-order effects at small drift values prior to the yielding of the post-tensioning tendon. It is also found from fragility curves that squat piers are more prone to seismic collapse compared to slender piers. The equivalent RC pier reaches slight and medium damage states in lower intensity measures compared to the PPS pier.
引用
收藏
页码:2566 / 2579
页数:14
相关论文
共 50 条
  • [1] Improving seismic performance of segmental precast post-tensioned bridge piers
    Amini, Mehrshad
    Mirtaheri, Masoud
    Zandi, Amir Peyman
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2017, 170 (12) : 928 - 938
  • [2] Cyclic tests of precast segmental unbonded post-tensioned concrete bridge piers
    Ou, Y. -C.
    Lee, G. C.
    Wang, P. -H.
    Tsai, M. -S.
    Chang, K. -C.
    INNOVATIONS IN BRIDGE ENGINEERING TECHNOLOGY, 2007, : 27 - 33
  • [3] Seismic Design and Performance Assessment of the Post-tensioned Bridge Piers
    Shen, Yu
    Freddi, Fabio
    Li, Jianzhong
    Li, Yongxing
    SEISMIC ISOLATION, ENERGY DISSIPATION AND ACTIVE VIBRATION CONTROL OF STRUCTURES, 17WCSI 2022, 2023, 309 : 438 - 446
  • [4] Experimental study on the seismic performance of precast segmental unbonded post-tensioned frame piers
    Bao, Longsheng
    Zhao, Jiakang
    Teng, Fei
    Kong, Zhe
    Yu, Ling
    Bao, Yuyang
    Zhao, Tongfeng
    Yang, Yuhao
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 173
  • [5] Experimental investigation of the seismic performance of precast post-tensioned segmental bridge piers with stainless energy-dissipating bars
    Fu, Jian-Yu
    Ge, Xiao
    Li, Jian-Tao
    Sun, Zhi-Guo
    Qian, Hui
    Wang, Dong-Sheng
    ENGINEERING STRUCTURES, 2023, 283
  • [6] Seismic vulnerability analysis of precast segmental bridge piers
    Hu, Zhijian
    Yan, Minghui
    Zhou, Zhi
    Wang, Jiejin
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2022, 55 (01): : 89 - 99
  • [7] Nonlinear seismic fragility analysis of a resilient precast post-tensioned segmental bridge pier
    Ahmadi, Ehsan
    Kocakaplan, Sedef
    Kashani, Mohammad M.
    SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 2022, 7 (06) : 823 - 841
  • [8] Experimental study on seismic performance of post-tensioned precast segmental piers designed with multiple joint openings
    Li, Xirui
    Unjoh, Shigeki
    ENGINEERING STRUCTURES, 2024, 318
  • [9] Seismic Response of a Historical Masonry Bridge under Near and Far-fault Ground Motions
    Ozmen, Alper
    Sayin, Erkut
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2021, 65 (03): : 946 - 958
  • [10] Segments arrangement effect on improvement of self-centering precast post-tensioned segmental piers seismic performance
    Anzabi, Pooria Poorahad
    Shiravand, Mahmoud R.
    STRUCTURAL CONCRETE, 2024, 25 (01) : 185 - 206