A Machine Learning Classifier for Fast Radio Burst Detection at the VLBA

被引:31
|
作者
Wagstaff, Kiri L. [1 ]
Tang, Benyang [1 ]
Thompson, David R. [1 ]
Khudikyan, Shakeh [1 ]
Wyngaard, Jane [1 ]
Deller, Adam T. [2 ]
Palaniswamy, Divya [3 ,4 ]
Tingay, Steven J. [3 ,5 ]
Wayth, Randall B. [3 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[3] Curtin Univ, ICRAR, Bentley, WA 6845, Australia
[4] Univ Nevada, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA
[5] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW, Australia
基金
美国国家航空航天局;
关键词
methods: data analysis; V-FASTR; TRANSIENTS; FRAMEWORK; SEARCH;
D O I
10.1088/1538-3873/128/966/084503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now classifies (and therefore filters) 80%-90% of the candidates, with an accuracy greater than 98%, leaving only the 10%-20% most promising candidates to be reviewed by humans.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] FRBCAT: The Fast Radio Burst Catalogue
    Petroff, E.
    Barr, E. D.
    Jameson, A.
    Keane, E. F.
    Bailes, M.
    Kramer, M.
    Morello, V.
    Tabbara, D.
    van Straten, W.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2016, 33
  • [22] The host galaxy of a fast radio burst
    E. F. Keane
    S. Johnston
    S. Bhandari
    E. Barr
    N. D. R. Bhat
    M. Burgay
    M. Caleb
    C. Flynn
    A. Jameson
    M. Kramer
    E. Petroff
    A. Possenti
    W. van Straten
    M. Bailes
    S. Burke-Spolaor
    R. P. Eatough
    B. W. Stappers
    T. Totani
    M. Honma
    H. Furusawa
    T. Hattori
    T. Morokuma
    Y. Niino
    H. Sugai
    T. Terai
    N. Tominaga
    S. Yamasaki
    N. Yasuda
    R. Allen
    J. Cooke
    J. Jencson
    M. M. Kasliwal
    D. L. Kaplan
    S. J. Tingay
    A. Williams
    R. Wayth
    P. Chandra
    D. Perrodin
    M. Berezina
    M. Mickaliger
    C. Bassa
    [J]. Nature, 2016, 530 : 453 - 456
  • [23] Finding the location of a fast radio burst
    Petroff, Emily
    [J]. SCIENCE, 2019, 365 (6453) : 546 - 547
  • [24] The future of fast radio burst science
    Keane, E. F.
    [J]. NATURE ASTRONOMY, 2018, 2 (11): : 865 - 872
  • [25] Fast radio burst energetics and sources
    Katz, J. I.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (01) : 491 - 501
  • [26] On the Fast Radio Burst and Persistent Radio Source Populations
    Law, Casey J.
    Connor, Liam
    Aggarwal, Kshitij
    [J]. ASTROPHYSICAL JOURNAL, 2022, 927 (01):
  • [27] The future of fast radio burst science
    E. F. Keane
    [J]. Nature Astronomy, 2018, 2 : 865 - 872
  • [28] Detection of Suspicious Cardiotocographic Recordings by Means of a Machine Learning Classifier
    Ricciardi, Carlo
    Amato, Francesco
    Tedesco, Annarita
    Dragone, Donatella
    Cosentino, Carlo
    Ponsiglione, Alfonso Maria
    Romano, Maria
    [J]. BIOENGINEERING-BASEL, 2023, 10 (02):
  • [29] Comprehensive Behaviour of Malware Detection Using the Machine Learning Classifier
    Asha, P.
    Lahari, T.
    Kavya, B.
    [J]. SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 462 - 469
  • [30] MALARIA PARASITE DETECTION USING DIFFERENT MACHINE LEARNING CLASSIFIER
    Olugboja, Adedeji
    Wang, Zenghui
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2017, : 246 - 250