A Machine Learning Classifier for Fast Radio Burst Detection at the VLBA

被引:31
|
作者
Wagstaff, Kiri L. [1 ]
Tang, Benyang [1 ]
Thompson, David R. [1 ]
Khudikyan, Shakeh [1 ]
Wyngaard, Jane [1 ]
Deller, Adam T. [2 ]
Palaniswamy, Divya [3 ,4 ]
Tingay, Steven J. [3 ,5 ]
Wayth, Randall B. [3 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[3] Curtin Univ, ICRAR, Bentley, WA 6845, Australia
[4] Univ Nevada, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA
[5] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW, Australia
基金
美国国家航空航天局;
关键词
methods: data analysis; V-FASTR; TRANSIENTS; FRAMEWORK; SEARCH;
D O I
10.1088/1538-3873/128/966/084503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now classifies (and therefore filters) 80%-90% of the candidates, with an accuracy greater than 98%, leaving only the 10%-20% most promising candidates to be reviewed by humans.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach
    Zhang, Yunfan Gerry
    Gajjar, Vishal
    Foster, Griffin
    Siemion, Andrew
    Cordes, James
    Law, Casey
    Wang, Yu
    [J]. ASTROPHYSICAL JOURNAL, 2018, 866 (02):
  • [2] Positive and unlabelled machine learning reveals new fast radio burst repeater candidates
    Sharma, Arjun
    Rajpaul, Vinesh Maguire
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 533 (03) : 3283 - 3295
  • [3] Classifying a frequently repeating fast radio burst, FRB 20201124A, with unsupervised machine learning
    Chen, Bo Han
    Hashimoto, Tetsuya
    Goto, Tomotsugu
    Raquel, Bjorn Jasper R.
    Uno, Yuri
    Kim, Seong Jin
    Hsiao, Tiger Y-Y
    Ho, Simon C-C
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 521 (04) : 5738 - 5745
  • [4] Applying Deep Learning to Fast Radio Burst Classification
    Connor, Liam
    van Leeuwen, Joeri
    [J]. ASTRONOMICAL JOURNAL, 2018, 156 (06):
  • [5] Fast radio burst detection in the presence of coloured noise
    Zhang, C. F.
    Xu, J. W.
    Men, Y. P.
    Deng, X. H.
    Xu, Heng
    Jiang, J. C.
    Wang, B. J.
    Lee, K. J.
    Li, J.
    Yuan, J. P.
    Liu, Z. Y.
    Huang, Y. X.
    Xu, Y. H.
    Li, Z. X.
    Hao, L. F.
    Luo, J. T.
    Dai, S.
    Luo, R.
    Zakie, Hassan
    Ma, Z. Y.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (04) : 5223 - 5231
  • [6] Building a Machine Learning Classifier for Malware Detection
    Markel, Zane
    Bilzor, Michael
    [J]. 2014 SECOND WORKSHOP ON ANTI-MALWARE TESTING RESEARCH (WATER), 2014, : 20 - 23
  • [7] Machine Learning Based Classifier for Falsehood Detection
    Mallikarjun, H. M.
    Manimegalai, P.
    Suresh, H. N.
    [J]. INTERNATIONAL CONFERENCE ON MATERIALS, ALLOYS AND EXPERIMENTAL MECHANICS (ICMAEM-2017), 2017, 225
  • [8] Fast Radio Burst 2020
    Keane, Evan F.
    [J]. NATURE ASTRONOMY, 2020, 4 (09) : 841 - 842
  • [9] Home of a fast radio burst
    Duncan Lorimer
    [J]. Nature, 2016, 530 : 427 - 428
  • [10] A repeating fast radio burst
    Spitler, L. G.
    Scholz, P.
    Hessels, J. W. T.
    Bogdanov, S.
    Brazier, A.
    Camilo, F.
    Chatterjee, S.
    Cordes, J. M.
    Crawford, F.
    Deneva, J.
    Ferdman, R. D.
    Freire, P. C. C.
    Kaspi, V. M.
    Lazarus, P.
    Lynch, R.
    Madsen, E. C.
    McLaughlin, M. A.
    Patel, C.
    Ransom, S. M.
    Seymour, A.
    Stairs, I. H.
    Stappers, B. W.
    van Leeuwen, J.
    Zhu, W. W.
    [J]. NATURE, 2016, 531 (7593) : 202 - +