ON QUANTITATIVE COMPACTNESS ESTIMATES FOR HYPERBOLIC CONSERVATION LAWS

被引:0
|
作者
Ancona, Fabio [1 ]
Glass, Olivier [2 ]
Nguyen, Khai T. [3 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Paris 09, CEREMADE, CNRS, UMR 7534, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Penn State Univ, Dept Math, 235 McAllister Buiding, University Pk, PA 16802 USA
关键词
Hyperbolic equations; conservation laws; characteristics; compactness estimates; Kolmogorov entropy; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the compactness in L-loc(1) of the semigroup (S-t)(t >= 0) of entropy weak solutions generated by hyperbolic conservation laws in one space dimension. This note provides a survey of recent results establishing upper and lower estimates for the Kolmogorov epsilon-entropy of the image through the mapping S-t of bounded sets in L-1 boolean AND L-infinity, both in the case of scalar and of systems of conservation laws. As suggested by Lax [16], these quantitative compactness estimates could provide a measure of the order of "resolution" of the numerical methods implemented for these equations.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [1] On compactness estimates for hyperbolic systems of conservation laws
    Ancona, Fabio
    Glass, Olivier
    Nguyen, Khai T.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (06): : 1229 - 1257
  • [2] Quantitative Compactness Estimates for Stochastic Conservation Laws
    Karlsen, Kenneth H.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL I, HYP2022, 2024, 34 : 41 - 61
  • [3] COMPENSATED COMPACTNESS AND HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS
    SERRE, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (12): : 555 - 558
  • [4] A quantitative compactness estimate for scalar conservation laws
    De Lellis, C
    Golse, F
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (07) : 989 - 998
  • [5] Compactness estimates for difference schemes for conservation laws with discontinuous flux
    Karlsen, Kenneth H.
    Towers, John D.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [6] A Posteriori Error Estimates for Numerical Solutions to Hyperbolic Conservation Laws
    Bressan, Alberto
    Chiri, Maria Teresa
    Shen, Wen
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) : 357 - 402
  • [7] Stiff systems of hyperbolic conservation laws: Convergence and error estimates
    Kurganov, A
    Tadmor, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (06) : 1446 - 1456
  • [8] A Posteriori Error Estimates for Numerical Solutions to Hyperbolic Conservation Laws
    Alberto Bressan
    Maria Teresa Chiri
    Wen Shen
    [J]. Archive for Rational Mechanics and Analysis, 2021, 241 : 357 - 402
  • [9] ON KOLMOGOROV ENTROPY COMPACTNESS ESTIMATES FOR SCALAR CONSERVATION LAWS WITHOUT UNIFORM CONVEXITY
    Ancona, Fabio
    Glass, Olivier
    Nguyen, Khai T.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) : 3020 - 3051
  • [10] Hyperbolic Conservation Laws
    Markfelder, Simon
    [J]. CONVEX INTEGRATION APPLIED TO THE MULTI-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS, 2021, 2294 : 13 - 25