Compactness estimates for difference schemes for conservation laws with discontinuous flux

被引:0
|
作者
Karlsen, Kenneth H. [1 ]
Towers, John D. [2 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, NO-0316 Oslo, Norway
[2] MiraCosta Coll, 3333 Manchester Ave, Cardiff By The Sea, CA 92007 USA
关键词
hyperbolic conservation law; discontinuous coefficient; Lax-Friedrichs difference scheme; quantitative compactness estimate;
D O I
10.1093/imanum/drad096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish quantitative compactness estimates for finite difference schemes used to solve nonlinear conservation laws. These equations involve a flux function $f(k(x,t),u)$, where the coefficient $k(x,t)$ is $BV$-regular and may exhibit discontinuities along curves in the $(x,t)$ plane. Our approach, which is technically elementary, relies on a discrete interaction estimate and one entropy function. While the details are specifically outlined for the Lax-Friedrichs scheme, the same framework can be applied to other difference schemes. Notably, our compactness estimates are new even in the homogeneous case ($k\equiv 1$).
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Convergence of a difference scheme for conservation laws with a discontinuous flux
    Towers, JD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) : 681 - 698
  • [2] CONVERGENCE RATES OF MONOTONE SCHEMES FOR CONSERVATION LAWS WITH DISCONTINUOUS FLUX
    Badwaik, Jayesh
    Ruf, Adrian M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 607 - 629
  • [3] A difference scheme for conservation laws with a discontinuous flux: The nonconvex case
    Towers, JD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) : 1197 - 1218
  • [4] Conservation laws with discontinuous flux
    Garavello, Mauro
    Natalini, Roberto
    Piccoli, Benedetto
    Terracina, Andrea
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2007, 2 (01) : 159 - 179
  • [5] ON QUANTITATIVE COMPACTNESS ESTIMATES FOR HYPERBOLIC CONSERVATION LAWS
    Ancona, Fabio
    Glass, Olivier
    Nguyen, Khai T.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 249 - 257
  • [6] Quantitative Compactness Estimates for Stochastic Conservation Laws
    Karlsen, Kenneth H.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL I, HYP2022, 2024, 34 : 41 - 61
  • [7] On compactness estimates for hyperbolic systems of conservation laws
    Ancona, Fabio
    Glass, Olivier
    Nguyen, Khai T.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (06): : 1229 - 1257
  • [8] Relaxation schemes for conservation laws with discontinuous coefficients
    Karlsen, KH
    Klingenberg, C
    Risebro, NH
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 611 - 620
  • [9] Conservation laws with discontinuous flux: a short introduction
    Raimund Bürger
    Kenneth H. Karlsen
    [J]. Journal of Engineering Mathematics, 2008, 60 : 241 - 247
  • [10] Fractional regularity for conservation laws with discontinuous flux
    Ghoshal, Shyam Sundar
    Junca, Stephane
    Parmar, Akash
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 75