2-torsion points on theta divisors

被引:1
|
作者
Pareschi, Giuseppe [2 ]
Manni, Riccardo Salvati [1 ]
机构
[1] Univ Tor Vergata, Dipartimento Matemat, Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, Rome, Italy
关键词
CURVES;
D O I
10.1093/imrn/rnz282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove a sharp bound for the number of 2-torsion points on a theta divisor and show that this is achieved only in the case of products of elliptic curves. This settles in the affirmative a conjecture of Marcucci and Pirola.
引用
收藏
页码:14616 / 14628
页数:13
相关论文
共 50 条
  • [21] NON-IMMERSION OF LENS SPACES WITH 2-TORSION
    BERRICK, AJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 224 (02) : 399 - 405
  • [22] THETA FUNCTIONS AND TORSION POINTS OF ABELIAN-VARIETIES
    DAVID, S
    COMPOSITIO MATHEMATICA, 1991, 78 (02) : 121 - 160
  • [23] Torsion points on a theta divisor in the Jacobian of a Fermat quotient
    Simon, Bret
    1600,
  • [24] CURVES IN CHARACTERISTIC 2 WITH NON-TRIVIAL 2-TORSION
    Castryck, Wouter
    Streng, Marco
    Testa, Damian
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 479 - 495
  • [25] GLUING CURVES OF GENUS 1 AND 2 ALONG THEIR 2-TORSION
    Hanselman, Jeroen
    Schiavone, Sam
    Sijsling, Jeroen
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2333 - 2379
  • [26] Optimized CSIDH Implementation Using a 2-Torsion Point
    Heo, Donghoe
    Kim, Suhri
    Yoon, Kisoon
    Park, Young-Ho
    Hong, Seokhie
    CRYPTOGRAPHY, 2020, 4 (03) : 1 - 13
  • [27] An SO(3)-Version of 2-Torsion Instanton Invariants
    Sasahira, Hirofumi
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2008, 15 (02): : 257 - 289
  • [28] A COMPUTATIONAL APPROACH TO THE 2-TORSION STRUCTURE OF ABELIAN THREEFOLDS
    Cullinan, John
    MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1825 - 1836
  • [29] On Kummer Lines with Full Rational 2-torsion and Their Usage in Cryptography
    Hisil, Huseyin
    Renes, Joost
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (04):
  • [30] Genus 2 curves and generalized theta divisors
    Brivio, Sonia
    Favale, Filippo F.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 155 : 112 - 140